Display options
Share it on
Full text links
Wiley Free PMC Article

J Physiol. 1996 Apr 15;492:419-30. doi: 10.1113/jphysiol.1996.sp021318.

Extracellular K(+)-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels.

The Journal of physiology

H J Knot, P A Zimmermann, M T Nelson

Affiliations

  1. Department of Pharmacology, University of Vermont, Colchester, VT 05446-2500, USA. [email protected]

PMID: 9019539 PMCID: PMC1158837 DOI: 10.1113/jphysiol.1996.sp021318
Free PMC Article

Abstract

1. The hypothesis that inward rectifier K(+) channels are involved in the vasodilatation of small coronary and cerebral arteries (100-200 microm diameter) in response to elevated [K+]o was tested. The diameters and membrane potentials of pressurized arteries from rat were measured using a video-imaging system and conventional microelectrodes, respectively. 2. Elevation of [K+]o from 6 to 16 mM caused the membrane potential of pressurized (60 mmHg) arteries to hyperpolarize by 12-14 mV. Extracellular Ba(2+) (Ba2+(o)) blocked K(+)-induced membrane potential hyperpolarizations at concentrations (IC(50), 6 microM) that block inward rectifier K(+) currents in smooth muscle cells isolated from these arteries. 3. Elevation of [K+]o from 6 to 16 mM caused sustained dilatations of pressurized coronary and cerebral arteries with diameters increasing from 125 to 192 microm and 110 to 180 microm in coronary and cerebral arteries, respectively. Ba2+(o) blocked K(+)-induced dilatations of pressurized coronary and cerebral arteries (IC50, 3-8 microM). 4. Elevated [K+]o-induced vasodilatation was not prevented by blockers of other types of K(+) channels (1 mM 4-aminopyridine, 1 mM TEA+, and 10 mu M glibenclamide), and blockers of Na(+)-K(+)-ATPase. Elevated [K+]o-induced vasodilatation was unaffected by removal of the endothelium. 5. These findings suggest that K+(o) dilates small rat coronary and cerebral arteries through activation of inward rectifier K(+) channels. Furthermore, these results support the hypothesis that inward rectifier K(+) channels may be involved in metabolic regulation of coronary and cerebral blood flow in response to changes in [K+]o.

Cited by

References

  1. Physiol Rev. 1968 Oct;48(4):688-707 - PubMed
  2. Am J Physiol. 1995 Nov;269(5 Pt 1):C1112-8 - PubMed
  3. Circ Res. 1972 Aug;31(2):240-7 - PubMed
  4. Pflugers Arch. 1976 May 6;363(1):27-31 - PubMed
  5. J Physiol. 1976 Nov;262(2):415-30 - PubMed
  6. Annu Rev Physiol. 1979;41:159-77 - PubMed
  7. J Gen Physiol. 1980 Feb;75(2):183-206 - PubMed
  8. Gen Pharmacol. 1981;12(5):393-6 - PubMed
  9. Circ Res. 1983 Apr;52(4):442-50 - PubMed
  10. J Physiol. 1982 Dec;333:53-67 - PubMed
  11. J Physiol. 1984 Feb;347:641-57 - PubMed
  12. J Cereb Blood Flow Metab. 1985 Mar;5(1):156-60 - PubMed
  13. Science. 1987 Aug 21;237(4817):896-8 - PubMed
  14. Physiol Rev. 1989 Apr;69(2):546-604 - PubMed
  15. J Physiol. 1988 Oct;404:437-54 - PubMed
  16. J Physiol. 1988 Oct;404:455-66 - PubMed
  17. J Physiol. 1989 May;412:65-91 - PubMed
  18. J Gen Physiol. 1989 Sep;94(3):539-65 - PubMed
  19. Am J Physiol. 1990 Sep;259(3 Pt 2):H902-8 - PubMed
  20. Science. 1992 Apr 24;256(5056):532-5 - PubMed
  21. Circ Res. 1992 Nov;71(5):1078-87 - PubMed
  22. J Biol Chem. 1993 Apr 15;268(11):8019-25 - PubMed
  23. Am J Physiol. 1993 Jun;264(6 Pt 2):H1774-80 - PubMed
  24. Am J Physiol. 1993 Nov;265(5 Pt 1):C1363-70 - PubMed
  25. J Cardiovasc Electrophysiol. 1994 Feb;5(2):154-81 - PubMed
  26. Nature. 1994 Nov 24;372(6504):366-9 - PubMed
  27. Science. 1994 Nov 11;266(5187):1068-72 - PubMed
  28. Am J Physiol. 1994 Dec;267(6 Pt 1):C1589-97 - PubMed
  29. Am J Physiol. 1995 Apr;268(4 Pt 1):C799-822 - PubMed
  30. Am J Physiol. 1995 Jul;269(1 Pt 2):H348-55 - PubMed
  31. Proc Soc Exp Biol Med. 1972 Jul;140(3):820-4 - PubMed

Substances

MeSH terms

Publication Types

Grant support

LinkOut - more resources