Display options
Share it on

Basic Res Cardiol. 1996 Sep-Oct;91(5):382-8. doi: 10.1007/BF00788718.

Blockade of the KATP-channel by glibenclamide aggravates ischemic injury, and counteracts ischemic preconditioning.

Basic research in cardiology

J Munch-Ellingsen, E Bugge, K Ytrehus

Affiliations

  1. Department of Medical Physiology, University of Tromso, Norway.

PMID: 8922256 DOI: 10.1007/BF00788718

Abstract

Blocking of the KATP-channel with glibenclamide has been shown to abolish the infarct-reducing effect of ischemic preconditioning in dog and swine. In the rabbit the results have been divergent purportedly related to anaesthesia. The aim of this study was to investigate the importance of the KATP-channel in a rabbit model where anaesthesia was not a confounding factor. Isolated rabbit hearts perfused with a Krebs-Henseleit bicarbonate buffer were subjected to 30 min regional ischemia by ligating a coronary artery, followed by 120 min reperfusion. The preconditioning protocol was 5 min global ischemia and 10 min reperfusion. Glibenclamide (100 microM) was added to the perfusion solution before the preconditioning ischemia and stopped after 5 min regional ischemia. Infarcts were measured with tetrazolium staining and risk zones with fluorescent microspheres. The main results expressed as percent infarction of the risk zone +/- SEM for the different groups are as follows: control (n = 12) 26.8 +/- 3.2, ischemic preconditioning (IP) (n = 9) 7.3 +/- 1.5, (p < 0.05 vs. control), control + glibenclamide (n = 9) 46.9 +/- 7.3 (p < 0.05 vs. control), IP + glibenclamide (n = 10) 38.3 +/- 6.9 (p < 0.05 vs. IP). These results show that glibenclamide treatment aggravates ischemia. Also, under the influence of glibenclamide ischemic preconditioning was no longer effective in reducing infarct size in the isolated perfused rabbit heart.

References

  1. Am J Physiol. 1992 Oct;263(4 Pt 2):H1107-12 - PubMed
  2. Circ Res. 1992 Feb;70(2):223-33 - PubMed
  3. Cardiovasc Res. 1993 Apr;27(4):617-22 - PubMed
  4. Circ Res. 1993 Jan;72(1):44-9 - PubMed
  5. Circulation. 1994 Mar;89(3):1229-36 - PubMed
  6. J Mol Cell Cardiol. 1994 May;26(5):661-8 - PubMed
  7. Am J Physiol. 1991 Dec;261(6 Pt 2):H1675-86 - PubMed
  8. Am J Physiol. 1991 Dec;261(6 Pt 2):H1864-71 - PubMed
  9. Circ Res. 1991 Sep;69(3):623-37 - PubMed
  10. Circulation. 1994 Aug;90(2):700-5 - PubMed
  11. Am J Physiol. 1994 Mar;266(3 Pt 2):H1145-52 - PubMed
  12. J Physiol. 1992 Feb;447:649-73 - PubMed
  13. Naunyn Schmiedebergs Arch Pharmacol. 1990 Aug;342(2):214-20 - PubMed
  14. Basic Res Cardiol. 1995 Sep-Oct;90(5):418-23 - PubMed
  15. Ion Channels. 1990;2:205-22 - PubMed
  16. Cardiovasc Res. 1993 Apr;27(4):644-51 - PubMed
  17. Biochem Biophys Res Commun. 1987 Jul 15;146(1):21-5 - PubMed
  18. Am J Physiol. 1994 Oct;267(4 Pt 2):H1341-52 - PubMed
  19. J Pharmacol Exp Ther. 1991 Dec;259(3):961-7 - PubMed
  20. Biochem Biophys Res Commun. 1988 Jul 29;154(2):620-5 - PubMed
  21. Nature. 1983 Sep 8-14;305(5930):147-8 - PubMed
  22. J Mol Cell Cardiol. 1993 Mar;25(3):311-20 - PubMed
  23. Cardiovasc Res. 1994 Jun;28(6):872-80 - PubMed
  24. Circ Res. 1992 Nov;71(5):1078-87 - PubMed
  25. Cardiovasc Res. 1994 Sep;28(9):1337-41 - PubMed
  26. Basic Res Cardiol. 1994 Nov-Dec;89(6):563-76 - PubMed
  27. Am J Physiol. 1994 Feb;266(2 Pt 2):H829-39 - PubMed
  28. Circ Res. 1990 Oct;67(4):835-43 - PubMed
  29. Am J Physiol. 1993 May;264(5 Pt 2):H1327-36 - PubMed
  30. Cardiovasc Res. 1994 Jun;28(6):864-71 - PubMed
  31. J Cardiovasc Pharmacol. 1995 Apr;25(4):531-8 - PubMed
  32. Trends Pharmacol Sci. 1994 Jan;15(1):19-25 - PubMed
  33. Am J Physiol. 1992 May;262(5 Pt 1):C1220-7 - PubMed
  34. Circulation. 1986 Nov;74(5):1124-36 - PubMed
  35. Am J Physiol. 1991 Sep;261(3 Pt 2):H671-6 - PubMed

Substances

MeSH terms

Publication Types