Display options
Share it on

Ann Biomed Eng. 1993 Mar-Apr;21(2):147-61. doi: 10.1007/BF02367610.

Evaluation of regional load in acute ischemia by three-dimensional curvatures analysis of the left ventricle.

Annals of biomedical engineering

J Lessick, S Sideman, H Azhari, E Shapiro, J L Weiss, R Beyar

Affiliations

  1. Julius Silver Institute, Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa.

PMID: 8484563 DOI: 10.1007/BF02367610

Abstract

Geometric remodeling of the left ventricule (LV) following myocardial infarction and ischemic insult is associated with myocardial load redistribution. Regional curvatures based on 3-D reconstructions of the LV are used to calculate the regional loads. The technique uses surface normals to derive local circumferential and meridional curvatures. Following the validation of the procedure on simple geometric shapes, the effect of acute ischemia on the regional load redistribution was studied in six open chest dogs. Short axis magnetic resonance imaging (MRI) scans were used to reconstruct end-diastolic (ED) and end-systolic (ES) LV images by applying our helical shape descriptor, before and after acute coronary occlusion. Regional curvatures as well as local wall thickness by the volume element method were calculated before and after acute ischemia, and were used to approximate regional loads, by a regional stress index (sigma/P). Postmortem evaluation using monastral blue staining was used to divide each LV to normal (NZ), ischemic (IZ), and border (BZ) zones in the ischemic case, and to the anatomically matched regions in the preischemic LVs. Ischemia affects the local curvatures and loads both at ED and ES. At ED, sigma/P rose significantly only in the IZ. Similarly, at ES, the highest increase in load was detected in the IZ, but increases in circumferential and meridional load were seen in all regions. Identifying the load redistribution following acute ischemia helps delineate the mechanisms affecting geometric LV remodeling following myocardial infarction.

References

  1. Circulation. 1990 Jan;81(1):297-307 - PubMed
  2. Am J Cardiol. 1983 Jun;51(10):1750-8 - PubMed
  3. Circulation. 1988 Feb;77(2):468-77 - PubMed
  4. Am J Physiol. 1988 May;254(5 Pt 2):H1010-6 - PubMed
  5. IEEE Trans Biomed Eng. 1989 Mar;36(3):322-32 - PubMed
  6. Circulation. 1989 Mar;79(3):706-11 - PubMed
  7. Am J Physiol. 1981 Mar;240(3):H413-20 - PubMed
  8. J Am Coll Cardiol. 1984 Feb;3(2 Pt 1):291-300 - PubMed
  9. Heart Vessels. 1986;2(2):74-80 - PubMed
  10. Radiology. 1988 Oct;169(1):59-63 - PubMed
  11. J Am Coll Cardiol. 1985 Jun;5(6):1355-62 - PubMed
  12. Circulation. 1991 Sep;84(3):1072-86 - PubMed
  13. Am J Physiol. 1982 May;242(5):H875-81 - PubMed
  14. Am Heart J. 1987 Feb;113(2 Pt 1):326-34 - PubMed
  15. Circ Res. 1986 Apr;58(4):570-83 - PubMed
  16. Mayo Clin Proc. 1975 Mar;50(3):147-56 - PubMed
  17. Med Biol Eng Comput. 1977 Jan;15(1):67-71 - PubMed
  18. Circulation. 1985 May;71(5):1048-59 - PubMed
  19. Circulation. 1982 Jan;65(1):99-108 - PubMed
  20. Med Biol Eng Comput. 1979 Sep;17(5):553-62 - PubMed
  21. Heart Vessels. 1985 Aug;1(3):133-44 - PubMed
  22. Circ Res. 1978 Feb;42(2):255-63 - PubMed
  23. Am J Cardiol. 1978 Apr;41(4):646-54 - PubMed
  24. Am J Physiol. 1990 Nov;259(5 Pt 2):H1492-503 - PubMed
  25. Cardiovasc Res. 1972 Sep;6(5):516-31 - PubMed
  26. Circulation. 1990 Apr;81(4):1161-72 - PubMed
  27. J Biomech. 1974 Nov;7(6):469-77 - PubMed
  28. Am J Cardiol. 1982 Dec;50(6):1301-8 - PubMed
  29. Circ Res. 1980 Nov;47(5):728-41 - PubMed

MeSH terms

Publication Types