Display options
Share it on
Full text links
Atypon Free PMC Article

Proc Natl Acad Sci U S A. 1993 Nov 01;90(21):10216-20. doi: 10.1073/pnas.90.21.10216.

Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides.

Proceedings of the National Academy of Sciences of the United States of America

J P Hendrick, T Langer, T A Davis, F U Hartl, M Wiedmann

Affiliations

  1. Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.

PMID: 8234279 PMCID: PMC47745 DOI: 10.1073/pnas.90.21.10216
Free PMC Article

Abstract

Recent evidence supports the view that cellular protein folding may be mediated by molecular chaperones. A fundamental question concerns the stage in its biogenesis at which the folding protein makes first contact with these components. We show here by crosslinking that the chaperone DnaJ binds nascent ribosome-bound polypeptide chains as short as 55 residues. Cotranslational binding of DnaJ to firefly luciferase and chloramphenicol acetyltransferase resulted in an arrest of folding as long as the functional partners of DnaJ in Escherichia coli, DnaK and GrpE, were missing. Protein uptake into microsomes and mitochondria was also interrupted by DnaJ. Both folding and post-translational translocation recommenced upon addition of DnaK and GrpE. We propose that DnaJ protects nascent polypeptide chains against aggregation and, in cooperation with Hsp70, controls their productive folding once a complete polypeptide or a polypeptide domain has been synthesized.

Cited by

References

  1. Nature. 1986 Apr 17-23;320(6063):634-6 - PubMed
  2. Annu Rev Biochem. 1993;62:349-84 - PubMed
  3. J Cell Biol. 1987 Feb;104(2):201-8 - PubMed
  4. Mol Cell Biol. 1987 Feb;7(2):725-37 - PubMed
  5. Annu Rev Cell Biol. 1986;2:499-516 - PubMed
  6. Nature. 1988 Apr 28;332(6167):800-5 - PubMed
  7. Nature. 1988 Apr 28;332(6167):805-10 - PubMed
  8. EMBO J. 1988 Jun;7(6):1769-75 - PubMed
  9. Biochemistry. 1990 Mar 6;29(9):2205-12 - PubMed
  10. Science. 1990 May 18;248(4957):850-4 - PubMed
  11. EMBO J. 1990 Dec;9(13):4315-22 - PubMed
  12. Nature. 1991 Feb 14;349(6310):627-30 - PubMed
  13. Biochemistry. 1991 Apr 2;30(13):3147-61 - PubMed
  14. Nature. 1991 Jul 4;352(6330):17-8 - PubMed
  15. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5719-23 - PubMed
  16. J Cell Biol. 1991 Aug;114(4):609-21 - PubMed
  17. Methods Cell Biol. 1991;34:241-62 - PubMed
  18. Nature. 1991 Oct 24;353(6346):726-30 - PubMed
  19. Mol Cell Biol. 1992 Jan;12(1):283-91 - PubMed
  20. Nature. 1992 Jan 2;355(6355):33-45 - PubMed
  21. Cell. 1992 Apr 17;69(2):353-65 - PubMed
  22. Nature. 1992 Apr 23;356(6371):683-9 - PubMed
  23. Biochem J. 1992 Jun 1;284 ( Pt 2):469-76 - PubMed
  24. Mol Cell Biol. 1992 Jul;12(7):3288-96 - PubMed
  25. Annu Rev Biophys Biomol Struct. 1992;21:293-322 - PubMed
  26. Cell. 1992 Oct 2;71(1):97-105 - PubMed
  27. J Biol Chem. 1992 Oct 15;267(29):20927-31 - PubMed
  28. Trends Biochem Sci. 1992 Aug;17(8):295-9 - PubMed
  29. Science. 1992 Nov 6;258(5084):931-6 - PubMed
  30. EMBO J. 1992 Dec;11(13):4767-78 - PubMed
  31. Cell. 1992 Dec 24;71(7):1143-55 - PubMed
  32. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8604-8 - PubMed

Substances

MeSH terms

Publication Types

Grant support

LinkOut - more resources