Display options
Share it on
Full text links
Atypon Free PMC Article

J Bacteriol. 1994 Nov;176(22):6802-11. doi: 10.1128/jb.176.22.6802-6811.1994.

Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants.

Journal of bacteriology

M Santana, M S Ionescu, A Vertes, R Longin, F Kunst, A Danchin, P Glaser

Affiliations

  1. Unité de Régulation de l'Expression Génétique, Institut Pasteur, Paris, France.

PMID: 7961438 PMCID: PMC197047 DOI: 10.1128/jb.176.22.6802-6811.1994
Free PMC Article

Abstract

We cloned and sequenced an operon of nine genes coding for the subunits of the Bacillus subtilis F0F1 ATP synthase. The arrangement of these genes in the operon is identical to that of the atp operon from Escherichia coli and from three other Bacillus species. The deduced amino acid sequences of the nine subunits are very similar to their counterparts from other organisms. We constructed two B. subtilis strains from which different parts of the atp operon were deleted. These B. subtilis atp mutants were unable to grow with succinate as the sole carbon and energy source. ATP was synthesized in these strains only by substrate-level phosphorylation. The two mutants had a decreased growth yield (43 and 56% of the wild-type level) and a decreased growth rate (61 and 66% of the wild-type level), correlating with a twofold decrease of the intracellular ATP/ADP ratio. In the absence of oxidative phosphorylation, B. subtilis increased ATP synthesis through substrate-level phosphorylation, as shown by the twofold increase of by-product formation (mainly acetate). The increased turnover of glycolysis in the mutant strain presumably led to increased synthesis of NADH, which would account for the observed stimulation of the respiration rate associated with an increase in the expression of genes coding for respiratory enzymes. It therefore appears that B. subtilis and E. coli respond in similar ways to the absence of oxidative phosphorylation.

Cited by

Li SX, Wu HT, Liu YT, Jiang YY, Zhang YS, Liu WD, Zhu KJ, Li DM, Zhang H.
Front Microbiol. 2018 May 23;9:1025. doi: 10.3389/fmicb.2018.01025. eCollection 2018.
PMID: 29875745

Jang YS, Seong HJ, Kwon SW, Lee YS, Im JA, Lee HL, Yoon YR, Lee SY.
Front Bioeng Biotechnol. 2021 Oct 25;9:754250. doi: 10.3389/fbioe.2021.754250. eCollection 2021.
PMID: 34760879

References

  1. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704-11 - PubMed
  2. Mol Microbiol. 1993 Oct;10(2):371-84 - PubMed
  3. J Bacteriol. 1973 Dec;116(3):1124-9 - PubMed
  4. J Bacteriol. 1972 Jul;111(1):287-9 - PubMed
  5. J Bacteriol. 1975 Mar;121(3):823-34 - PubMed
  6. Arch Biochem Biophys. 1975 Mar;167(1):311-21 - PubMed
  7. J Bacteriol. 1975 Nov;124(2):870-83 - PubMed
  8. Cell. 1978 May;14(1):179-90 - PubMed
  9. Biochim Biophys Acta. 1978 Sep 21;505(1):45-93 - PubMed
  10. J Biol Chem. 1979 Sep 10;254(17):8230-6 - PubMed
  11. Annu Rev Biochem. 1979;48:103-31 - PubMed
  12. J Mol Biol. 1981 Mar 25;147(1):195-7 - PubMed
  13. Nucleic Acids Res. 1981 Aug 25;9(16):3919-26 - PubMed
  14. J Biol Chem. 1982 Feb 25;257(4):2009-15 - PubMed
  15. Biochem Biophys Res Commun. 1981 Nov 30;103(2):613-20 - PubMed
  16. Mol Gen Genet. 1981;183(3):463-72 - PubMed
  17. J Bacteriol. 1982 May;150(2):815-25 - PubMed
  18. Eur J Biochem. 1982 Apr 1;123(2):253-60 - PubMed
  19. Gene. 1982 Oct;19(3):269-76 - PubMed
  20. Gene. 1982 Oct;19(3):277-84 - PubMed
  21. Mol Gen Genet. 1982;188(2):240-8 - PubMed
  22. J Mol Biol. 1983 Jun 5;166(4):557-80 - PubMed
  23. Gene. 1983 Sep;23(3):331-41 - PubMed
  24. EMBO J. 1984 Aug;3(8):1791-7 - PubMed
  25. J Mol Biol. 1984 Oct 25;179(2):185-214 - PubMed
  26. Biochem J. 1984 Dec 15;224(3):799-815 - PubMed
  27. Gene. 1985;33(1):103-19 - PubMed
  28. Biochem J. 1985 Jun 1;228(2):391-407 - PubMed
  29. EMBO J. 1985 Feb;4(2):519-26 - PubMed
  30. J Bacteriol. 1987 Jan;169(1):80-6 - PubMed
  31. J Mol Biol. 1987 Apr 5;194(3):359-83 - PubMed
  32. Biochim Biophys Acta. 1988 Mar 30;933(1):141-55 - PubMed
  33. Nucleic Acids Res. 1988 Mar 11;16(5):1829-36 - PubMed
  34. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444-8 - PubMed
  35. Nucleic Acids Res. 1988 Apr 25;16(8):3580 - PubMed
  36. J Biol Chem. 1989 Jan 25;264(3):1528-33 - PubMed
  37. Gene. 1988 Aug 15;68(1):139-49 - PubMed
  38. Gene. 1988 Dec 15;73(1):237-44 - PubMed
  39. Mol Microbiol. 1993 Oct;10(1):193-201 - PubMed
  40. J Bacteriol. 1990 Feb;172(2):824-34 - PubMed
  41. J Mol Biol. 1990 Oct 5;215(3):403-10 - PubMed
  42. Eur J Biochem. 1991 Jan 30;195(2):517-25 - PubMed
  43. J Bacteriol. 1991 Apr;173(7):2366-77 - PubMed
  44. Nucleic Acids Res. 1991 Jul 25;19(14):3907-11 - PubMed
  45. J Mol Biol. 1991 Aug 5;220(3):631-48 - PubMed
  46. Mol Gen Genet. 1991 Oct;229(2):292-300 - PubMed
  47. Res Microbiol. 1991 Sep-Oct;142(7-8):905-12 - PubMed
  48. Mol Microbiol. 1991 Oct;5(10):2447-58 - PubMed
  49. Biochimie. 1991 Nov;73(11):1361-74 - PubMed
  50. J Biol Chem. 1992 May 25;267(15):10225-31 - PubMed
  51. Biochem J. 1992 Aug 1;285 ( Pt 3):881-8 - PubMed
  52. J Bacteriol. 1992 Dec;174(23):7635-41 - PubMed
  53. Biochem J. 1993 Aug 15;294 ( Pt 1):239-51 - PubMed
  54. Biosci Biotechnol Biochem. 1993 Jul;57(7):1202-3 - PubMed
  55. J Bacteriol. 1994 Mar;176(5):1234-41 - PubMed
  56. Nature. 1969 Mar 1;221(5183):838-41 - PubMed

Substances

MeSH terms

Publication Types

LinkOut - more resources