25 mM reduced the current. The dependence of the current on free Ca2+ was Michaelis-Menten-like, with half-maximal activation (KM(Ca)) at < 10 microM Ca2+. Caged Sr2+ and Ba2+, but not Mg2+, also supported photolysis-evoked outward current, as did Ni2+, but not Mn2+. However, Mg2+ and Mn2+ augmented the Ca-dependent current, perhaps by facilitating the adsorption of proteoliposomes to the BLM. The Ca-dependent current was irreversibly blocked by La3+ (added as 200 microM DMN-La3+). The results indicate that the properties of the Na/Ca exchanger can be studied with these electro-physiological methods." />
Display options
Share it on

J Membr Biol. 1995 May;145(2):151-64. doi: 10.1007/BF00237373.

Electrical currents generated by a partially purified Na/Ca exchanger from lobster muscle reconstituted into liposomes and adsorbed on black lipid membranes: activation by photolysis of Ca2+.

The Journal of membrane biology

A Eisenrauch, M Juhaszova, G C Ellis-Davies, J H Kaplan, E Bamberg, M P Blaustein

Affiliations

  1. Laboratory of Biophysical Chemistry, Max-Planck-Institute für Biophysik, Frankfurt/M, Germany.

PMID: 7563017 DOI: 10.1007/BF00237373

Abstract

The Na/Ca exchanger from lobster muscle crossreacts specifically with antibodies raised against the dog heart Na/Ca exchanger. Immunoblots of the lobster muscle and mammalian heart exchangers, following SDS-PAGE, indicate that the invertebrate and mammalian exchangers have similar molecular weights: about 120 kDa. The exchanger from lobster muscle was partially purified and functionally reconstituted into asolectin vesicles which were loaded with 160 mM NaCl. 45Ca uptake by these proteoliposomes was promoted by replacing 160 mM NaCl in the external medium with 160 mM KCl to produce an outwardly-directed Na+ concentration gradient. When the proteoliposomes were adsorbed onto black lipid membranes (BLM), and DM-Nitrophen-Ca2+ ("caged Ca2+") was added to the KCl medium, photolytically-evoked Ca2+ concentration jumps elicited transient electric currents. These currents corresponded to positive charge exiting from the proteoliposomes, and were consistent with the Na/Ca exchanger-mediated exit of 3 Na+ in exchange for 1 entering Ca2+. The current was dependent upon the Ca2+ concentration jump, the protein integrity, and the outwardly directed Na+ gradient. KCl-loaded proteoliposomes did not produce any current. Low external Na+ concentrations augmented the current, whereas Na+ concentrations > 25 mM reduced the current. The dependence of the current on free Ca2+ was Michaelis-Menten-like, with half-maximal activation (KM(Ca)) at < 10 microM Ca2+. Caged Sr2+ and Ba2+, but not Mg2+, also supported photolysis-evoked outward current, as did Ni2+, but not Mn2+. However, Mg2+ and Mn2+ augmented the Ca-dependent current, perhaps by facilitating the adsorption of proteoliposomes to the BLM. The Ca-dependent current was irreversibly blocked by La3+ (added as 200 microM DMN-La3+). The results indicate that the properties of the Na/Ca exchanger can be studied with these electro-physiological methods.

References

  1. FEBS Lett. 1993 Jan 18;316(1):63-7 - PubMed
  2. J Membr Biol. 1975 Jul 24;22(3-4):285-312 - PubMed
  3. Ann N Y Acad Sci. 1991;639:189-201 - PubMed
  4. Science. 1987 Dec 18;238(4834):1720-2 - PubMed
  5. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
  6. FEBS Lett. 1990 Jul 30;268(1):152-6 - PubMed
  7. J Biol Chem. 1988 Aug 15;263(23):11382-8 - PubMed
  8. Biochim Biophys Acta. 1985 Jul 25;817(2):313-7 - PubMed
  9. Ann N Y Acad Sci. 1991;639:147-55 - PubMed
  10. Biophys J. 1977 Oct;20(1):79-111 - PubMed
  11. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6571-5 - PubMed
  12. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6354-8 - PubMed
  13. J Physiol. 1987 Mar;384:199-222 - PubMed
  14. Gen Physiol Biophys. 1987 Oct;6(5):469-78 - PubMed
  15. Biochim Biophys Acta. 1985 Jul 25;817(2):327-32 - PubMed
  16. J Membr Biol. 1987;97(3):161-78 - PubMed
  17. FEBS Lett. 1976 Dec 15;72(1):136-8 - PubMed
  18. J Physiol. 1995 Jun 1;485 ( Pt 2):349-64 - PubMed
  19. J Gen Physiol. 1989 Jun;93(6):1219-41 - PubMed
  20. Biochemistry. 1992 Sep 22;31(37):8856-61 - PubMed
  21. Anal Biochem. 1985 Oct;150(1):97-104 - PubMed
  22. Biochim Biophys Acta. 1976 Sep 7;443(3):623-8 - PubMed
  23. Arch Biochem Biophys. 1991 Nov 1;290(2):369-75 - PubMed
  24. Biochim Biophys Acta. 1988 Nov 22;945(2):298-306 - PubMed
  25. Science. 1990 Oct 26;250(4980):562-5 - PubMed
  26. Anal Biochem. 1980 Jul 1;105(2):361-3 - PubMed
  27. Biophys J. 1993 Aug;65(2):882-91 - PubMed
  28. J Physiol. 1970 Jul;208(3):607-44 - PubMed
  29. Ann N Y Acad Sci. 1991;639:254-74 - PubMed
  30. Nature. 1991 Feb 14;349(6310):621-4 - PubMed
  31. EMBO J. 1985 Dec 1;4(12):3079-85 - PubMed
  32. J Gen Physiol. 1964 Sep;48:163-79 - PubMed
  33. Biochim Biophys Acta. 1989 Nov 27;986(2):250-6 - PubMed
  34. Biochim Biophys Acta. 1984 Jun 27;773(2):279-89 - PubMed
  35. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6569-73 - PubMed
  36. J Neurobiol. 1994 Mar;25(3):312-24 - PubMed
  37. Gen Physiol Biophys. 1987 Oct;6(5):523-7 - PubMed
  38. Trends Neurosci. 1988 Oct;11(10):438-43 - PubMed
  39. Ann N Y Acad Sci. 1991;639:126-39 - PubMed
  40. J Biol Chem. 1983 Mar 10;258(5):3178-82 - PubMed
  41. J Gen Physiol. 1974 Feb;63(2):144-67 - PubMed
  42. Ann N Y Acad Sci. 1991;639:181-8 - PubMed
  43. J Supramol Struct. 1974;2(5-6):558-81 - PubMed
  44. J Neurosci. 1994 Oct;14(10):5834-43 - PubMed
  45. Anal Biochem. 1991 Nov 1;198(2):312-7 - PubMed
  46. J Biol Chem. 1994 Feb 18;269(7):5145-9 - PubMed
  47. J Membr Biol. 1990 Apr;114(3):245-56 - PubMed
  48. J Immunol Methods. 1984 Sep 4;72(2):313-40 - PubMed
  49. J Physiol. 1958 Aug 6;142(3):516-43 - PubMed
  50. Biochim Biophys Acta. 1987 May 12;899(1):59-66 - PubMed
  51. Ann N Y Acad Sci. 1991;639:140-6 - PubMed
  52. J Biol Chem. 1988 Feb 15;263(5):2309-15 - PubMed
  53. J Biol Chem. 1984 Jun 25;259(12):7733-9 - PubMed
  54. J Biol Chem. 1991 Jan 15;266(2):1014-20 - PubMed
  55. J Physiol. 1969 Feb;200(2):431-58 - PubMed
  56. Am J Physiol. 1987 Jul;253(1 Pt 1):C45-51 - PubMed
  57. Biochim Biophys Acta. 1987 Jun 30;900(2):209-20 - PubMed

Substances

MeSH terms

Publication Types

Grant support