Display options
Share it on
Full text links
Silverchair Information Systems Free PMC Article

Biochem J. 1980 Nov 15;192(2):499-506. doi: 10.1042/bj1920499.

General characteristics of normal and stress-enhanced protein degradation in Lemna minor (duckweed).

The Biochemical journal

R J Cooke, D D Davies

PMID: 7236222 PMCID: PMC1162364 DOI: 10.1042/bj1920499
Free PMC Article

Abstract

The general features of protein degradation in Lemna minor were studied by using a double-isotope technique. In common with several animal systems, there are correlations between the relative rate of protein degradation on the one hand and molecular weight, charge and carbohydrate content on the other. Large proteins, acidic proteins and non-glycosylated proteins are degraded relatively more rapidly than small or basic proteins, or glycoproteins. The correlations with size and carbohydrate content are explicable on the basis of differential susceptibility to Pronase, whereas the charge correlation cannot be explained on the basis. In addition, acidic proteins are not generally of higher molecular weight than neutral or basic proteins. The correlations are found in fronds growing in normal complete medium and in fronds transferred to medium lacking nitrate of made 50% (v/v) with respect to deuterium oxide, both of which are conditions that induce a large increase in protein breakdown in Lemna. Thus basal protein degradation and enhanced degradation do not appear to differ fundamentally in their general characteristics. The results are discussed in relation to the reported features of normal and enhanced proteolysis in animal tissues and to the possible mechanism of protein degradation in Lemna.

Cited by

References

  1. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3893-7 - PubMed
  2. J Biol Chem. 1972 Jan 10;247(1):98-111 - PubMed
  3. Biochem Biophys Res Commun. 1975 Nov 17;67(2):604-9 - PubMed
  4. Biochem J. 1978 Dec 15;176(3):927-32 - PubMed
  5. J Biol Chem. 1979 Mar 25;254(6):1927-31 - PubMed
  6. Biochem Biophys Res Commun. 1970 Sep 30;40(6):1473-80 - PubMed
  7. Curr Top Cell Regul. 1976;11:183-201 - PubMed
  8. Plant Physiol. 1970 Jun;45(6):742-51 - PubMed
  9. Biochem J. 1979 Feb 15;178(2):305-12 - PubMed
  10. Biochem J. 1962 May;83:335-41 - PubMed
  11. J Biol Chem. 1971 Apr 25;246(8):2574-83 - PubMed
  12. Biochem J. 1977 Nov 15;168(2):223-7 - PubMed
  13. Annu Rev Biochem. 1976;45:747-803 - PubMed
  14. Biochem J. 1979 May 15;180(2):339-45 - PubMed
  15. J Biol Chem. 1973 Jun 25;248(12):4220-8 - PubMed
  16. Annu Rev Biochem. 1974;43(0):835-69 - PubMed
  17. J Biol Chem. 1974 Oct 10;249(19):6364-5 - PubMed
  18. Biochem Biophys Res Commun. 1976 Nov 8;73(1):79-84 - PubMed
  19. Proc Natl Acad Sci U S A. 1978 May;75(5):2093-7 - PubMed
  20. Arch Biochem Biophys. 1980 Feb;199(2):331-41 - PubMed
  21. Plant Physiol. 1979 Dec;64(6):1109-13 - PubMed
  22. Biochem J. 1979 Nov 15;184(2):367-77 - PubMed
  23. Biochem Biophys Res Commun. 1971 Apr 16;43(2):333-9 - PubMed
  24. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3093-7 - PubMed
  25. J Biol Chem. 1969 Jun 25;244(12):3303-15 - PubMed
  26. Nature. 1976 Aug 5;262(5568):514-6 - PubMed
  27. Biochem J. 1976 Jun 15;156(3):609-17 - PubMed
  28. Eur J Biochem. 1973 Jul 2;36(1):273-9 - PubMed
  29. J Biol Chem. 1979 Jun 10;254(11):4475-81 - PubMed
  30. J Biol Chem. 1979 Jun 25;254(12):5000-7 - PubMed

Substances

MeSH terms

Publication Types

LinkOut - more resources