Display options
Share it on
Full text links
Wiley Free PMC Article

J Physiol. 1979 Sep;294:105-22. doi: 10.1113/jphysiol.1979.sp012918.

Segmental and descending control of the external urethral and anal sphincters in the cat.

The Journal of physiology

R Mackel

PMID: 512936 PMCID: PMC1280545 DOI: 10.1113/jphysiol.1979.sp012918
Free PMC Article

Abstract

1. The present work concerns the contribution of the somatic central nervous system to two viscero-somatic reflexes, micturition and defecation. Descending and segmental actions and properties of the motoneurones innervating the striated external urethral and external anal sphincters were studied with intracellular recording in male cats, under chloralose anaesthesia. 2. Motoneurones innervating the external urethral and external anal sphincters were intermingled and most strongly concentrated in the lateral part of the ventral horn in the S2 segment of the spinal cord. 3. Stimulation of the S1 to S3 ipsilateral dorsal roots or of the homonymous pudendal nerve branches showed that less than half of the sphincter motoneurons receive monosynaptic excitatory connexions from low threshold afferents. 4. The after-hyperpolarization recorded in the external urethral and external anal sphincter motoneurones was relatively short lasting, not long lasting as would have been expected for motoneurones innervating slow-twitch, tonic type muscles. 5. There was no evidence for recurrent inhibition in pudendal motoneurones innervating the external urethral and external anal sphincters. 6. Descending excitation and inhibition to the sphincter motoneurones originated in the nucleus reticularis gigantocellularis of the medullary reticular formation. The descending reticulospinal actions are comparable to those observed in hind limb motoneurones. 7. It is suggested that the segmental reflex connexions play a role in controlling bladder and rectal continence. The descending actions studied also modulate the segmental reflex actions and may provide voluntary control of the sphincter muscles.

Similar articles

Malot C, Chesnel C, Hentzen C, Haddad R, Miget G, Grasland M, Le Breton F, Amarenco G.
Prog Urol. 2021 Sep;31(11):651-662. doi: 10.1016/j.purol.2020.10.008. Epub 2020 Nov 26.
PMID: 33250359

Cited by

References

  1. J Anat Physiol. 1894 Oct;29(Pt 1):61-83 - PubMed
  2. J Physiol. 1896 Oct 19;20(4-5):372-406 - PubMed
  3. J Physiol. 1936 May 4;86(4):396-414 - PubMed
  4. J Physiol. 1895 Dec 30;19(1-2):71-139 - PubMed
  5. J Physiol. 1959 Dec;149:653-65 - PubMed
  6. J Physiol. 1959 Dec;149:374-93 - PubMed
  7. Physiol Rev. 1965 Jul;45:425-94 - PubMed
  8. Q J Exp Physiol Cogn Med Sci. 1964 Jul;49:258-67 - PubMed
  9. J Physiol. 1963 Sep;168:258-73 - PubMed
  10. J Physiol. 1961 Dec;159:479-99 - PubMed
  11. J Neurophysiol. 1958 Jul;21(4):319-26 - PubMed
  12. J Physiol. 1958 Jul 14;142(2):275-91 - PubMed
  13. J Physiol. 1957 Oct 30;138(3):381-400 - PubMed
  14. J Physiol. 1957 Jun 18;137(1):22-50 - PubMed
  15. J Physiol. 1957 May 23;136(3):527-46 - PubMed
  16. J Physiol. 1956 Oct 29;134(1):229-40 - PubMed
  17. J Physiol. 1954 Dec 10;126(3):524-62 - PubMed
  18. J Comp Neurol. 1954 Apr;100(2):297-379 - PubMed
  19. J Comp Neurol. 1951 Apr;94(2):313-63 - PubMed
  20. J Physiol. 1978 Dec;285:425-44 - PubMed
  21. Brain Res. 1978 Jan 20;140(1):149-54 - PubMed
  22. Acta Physiol Scand. 1968 Nov;74(3):274-84 - PubMed
  23. Nature. 1965 Apr 10;206(980):211-3 - PubMed
  24. Arch Ital Biol. 1968 May;106(2):124-40 - PubMed
  25. Exp Brain Res. 1976 Jun 30;25(4):391-400 - PubMed
  26. J Comp Neurol. 1970 Oct;140(2):131-54 - PubMed
  27. Jpn J Physiol. 1966 Jun 15;16(3):291-303 - PubMed
  28. J Neurophysiol. 1971 Jan;34(1):171-87 - PubMed
  29. J Neurol Sci. 1970 Jan;10(1):11-23 - PubMed
  30. Brain Res. 1967 Oct;6(2):275-324 - PubMed
  31. J Neurophysiol. 1967 Jul;30(4):661-74 - PubMed

MeSH terms

Publication Types

LinkOut - more resources