Display options
Share it on
Full text links
Wiley Free PMC Article

J Physiol. 1979 Aug;293:1-10. doi: 10.1113/jphysiol.1979.sp012875.

Electrophysiology and pharmacology of striated muscle fibres cultured from dissociated neonatal rat pineal glands.

The Journal of physiology

J E Freschi, A G Parfitt, W G Shain

PMID: 501574 PMCID: PMC1280699 DOI: 10.1113/jphysiol.1979.sp012875
Free PMC Article

Abstract

1. Striated muscle fibres were found in each of twenty consecutive pineal glands cultured from individual neonatal rats.2. In subsequent experiments performed with dissociated cultures of pineal organs pooled from several litters, myotubes were first visible after about 1 week in culture.3. During the next several weeks the myotubes increased in size, developed crossstriations, and began to twitch spontaneously.4. The resting membrane potential increased with age in culture. All myotubes studied showed delayed rectification. Action potentials either occurred spontaneously or could be evoked if the membrane were sufficiently polarized. No spontaneous end plate potentials were seen.5. Acetylcholine (ACh) produced a brief, monophasic depolarizing response. Noradrenaline, serotonin, melatonin, dopamine, and gamma-aminobutyric acid (GABA) had no effect on the resting membrane potential when applied iontophoretically.6. The ACh response was reversibly blocked by 10(-6)M-tubocurarine and irreversibly blocked by 10(-6)M-alpha-bungarotoxin. Atropine (10(-4)M) reduced the amplitude and shortened the time course of the ACh response, and 10(-3)M-atropine produced complete but reversible inhibition.7. We conclude that pineal muscle fibres are electrophysiologically and pharmacologically similar to skeletal muscle fibres in vitro. Although the pineal gland has undetectable levels of ACh, pineal muscle develops ACh receptors but not noradrenaline, serotonin, melatonin, dopamine, or GABA receptors mediating electrophysiological responses, although these latter substances (except dopamine) are found in the pineal.

Similar articles

References

  1. Prog Brain Res. 1965;10:49-86 - PubMed
  2. Science. 1963 Jun 21;140(3573):1273-84 - PubMed
  3. J Physiol. 1977 Aug;270(1):75-88 - PubMed
  4. J Physiol. 1977 Jul;269(1):109-30 - PubMed
  5. In Vitro. 1977;13(12):843-8 - PubMed
  6. Exp Cell Res. 1977 Feb;104(2):345-56 - PubMed
  7. N Engl J Med. 1977 Jun 16;296(24):1383-6 - PubMed
  8. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5166-70 - PubMed
  9. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5162-5 - PubMed
  10. Neurology. 1977 Nov;27(11):1019-22 - PubMed
  11. J Neuropathol Exp Neurol. 1976 Nov-Dec;35(6):613-21 - PubMed
  12. J Physiol. 1973 Mar;229(3):751-66 - PubMed
  13. J Pharmacol Exp Ther. 1976 Feb;196(2):360-72 - PubMed
  14. J Physiol. 1972 Aug;224(3):665-99 - PubMed
  15. J Physiol. 1973 Jun;231(3):549-74 - PubMed
  16. J Physiol. 1970 Jul;208(3):607-44 - PubMed
  17. J Physiol. 1968 Mar;195(2):493-503 - PubMed
  18. Proc Natl Acad Sci U S A. 1969 Mar;62(3):852-9 - PubMed
  19. J Physiol. 1975 Jan;244(1):129-43 - PubMed
  20. Proc R Soc Lond B Biol Sci. 1973 Nov 27;184(1075):221-6 - PubMed
  21. Dev Biol. 1971 Sep;26(1):55-68 - PubMed
  22. Ann N Y Acad Sci. 1974 Mar 22;228(0):47-62 - PubMed
  23. Proc Natl Acad Sci U S A. 1973 Jan;70(1):270-4 - PubMed
  24. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3180-4 - PubMed
  25. Brain Res. 1974 Oct 18;79(2):347-51 - PubMed
  26. Dev Biol. 1973 Mar;31(1):147-62 - PubMed
  27. Fed Proc. 1973 Jun;32(6):1636-42 - PubMed
  28. J Neurochem. 1972 Feb;19(2):431-5 - PubMed
  29. Proc Natl Acad Sci U S A. 1966 Jan;55(1):66-73 - PubMed
  30. J Cell Physiol. 1975 Dec;86(3 Pt 1):503-10 - PubMed
  31. J Gen Physiol. 1975 Sep;66(3):327-55 - PubMed
  32. J Cell Physiol. 1971 Oct;78(2):289-99 - PubMed

Substances

MeSH terms

Publication Types

LinkOut - more resources