Display options
Share it on

Sci Data. 2016 Nov 22;3:160095. doi: 10.1038/sdata.2016.95.

Systematic chemical-genetic and chemical-chemical interaction datasets for prediction of compound synergism.

Scientific data

Jan Wildenhain, Michaela Spitzer, Sonam Dolma, Nick Jarvik, Rachel White, Marcia Roy, Emma Griffiths, David S Bellows, Gerard D Wright, Mike Tyers

Affiliations

  1. Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
  2. Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.
  3. Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5.
  4. Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7.

PMID: 27874849 PMCID: PMC5127411 DOI: 10.1038/sdata.2016.95

Abstract

The network structure of biological systems suggests that effective therapeutic intervention may require combinations of agents that act synergistically. However, a dearth of systematic chemical combination datasets have limited the development of predictive algorithms for chemical synergism. Here, we report two large datasets of linked chemical-genetic and chemical-chemical interactions in the budding yeast Saccharomyces cerevisiae. We screened 5,518 unique compounds against 242 diverse yeast gene deletion strains to generate an extended chemical-genetic matrix (CGM) of 492,126 chemical-gene interaction measurements. This CGM dataset contained 1,434 genotype-specific inhibitors, termed cryptagens. We selected 128 structurally diverse cryptagens and tested all pairwise combinations to generate a benchmark dataset of 8,128 pairwise chemical-chemical interaction tests for synergy prediction, termed the cryptagen matrix (CM). An accompanying database resource called ChemGRID was developed to enable analysis, visualisation and downloads of all data. The CGM and CM datasets will facilitate the benchmarking of computational approaches for synergy prediction, as well as chemical structure-activity relationship models for anti-fungal drug discovery.

Conflict of interest statement

The authors declare no competing financial interests.

References

  1. Science. 2008 Apr 18;320(5874):362-5 - PubMed
  2. Bioinformatics. 2012 Aug 15;28(16):2200-1 - PubMed
  3. Mol Syst Biol. 2011 Jun 21;7:499 - PubMed
  4. Nucleic Acids Res. 2015 Jan;43(Database issue):D470-8 - PubMed
  5. Nat Rev Drug Discov. 2007 Mar;6(3):202-10 - PubMed
  6. Molecules. 2010 Jul 27;15(8):5079-92 - PubMed
  7. Mol Syst Biol. 2011 Nov 08;7:544 - PubMed
  8. Science. 2010 Jan 22;327(5964):425-31 - PubMed
  9. Curr Opin Chem Biol. 2004 Feb;8(1):81-90 - PubMed
  10. Chem Biol. 2012 Jul 27;19(7):883-92 - PubMed
  11. Nucleic Acids Res. 2011 Jan;39(Database issue):D1035-41 - PubMed
  12. Pharmacol Rev. 1995 Jun;47(2):331-85 - PubMed
  13. Nat Chem Biol. 2013 Apr;9(4):222-31 - PubMed
  14. Wiley Interdiscip Rev Syst Biol Med. 2010 Mar-Apr;2(2):181-93 - PubMed
  15. Nat Chem Biol. 2015 Dec;11(12):958-66 - PubMed
  16. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13 - PubMed
  17. J Med Chem. 1996 Jul 19;39(15):2887-93 - PubMed
  18. Nat Biotechnol. 2004 Jan;22(1):62-9 - PubMed
  19. Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3461-6 - PubMed
  20. Chem Biol. 2013 Mar 21;20(3):333-40 - PubMed
  21. Dis Model Mech. 2010 Sep-Oct;3(9-10):639-51 - PubMed
  22. Nat Biotechnol. 2014 Dec;32(12):1213-22 - PubMed
  23. Nat Chem Biol. 2006 Sep;2(9):458-66 - PubMed
  24. Cell Syst. 2015 Dec 23;1(6):383-95 - PubMed

Substances

MeSH terms

Publication Types

Grant support