Display options
Share it on

Oncotarget. 2016 Dec 13;7(50):82538-82553. doi: 10.18632/oncotarget.12757.

The serum protein profile of early parity which induces protection against breast cancer.

Oncotarget

Christina Gutierrez Bracamontes, Rebecca Lopez-Valdez, Ramadevi Subramani, Arunkumar Arumugam, Sushmita Nandy, Venkatesh Rajamanickam, Vignesh Ravichandran, Rajkumar Lakshmanaswamy

Affiliations

  1. Center of Emphasis in Cancer Research, Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, TX 79905, USA.
  2. Division of Genetic Epidemiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
  3. Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
  4. Texas Tech University Health Sciences Center El Paso-Graduate School of Biomedical Sciences, El Paso, TX 79905, USA.

PMID: 27769065 PMCID: PMC5347712 DOI: 10.18632/oncotarget.12757

Abstract

Early parity reduces the risk of breast cancer in women while nulliparity and late parity increase the risk of breast cancer. In order to translate this protection to women where early pregnancy is not feasible, much work has focused on understanding how parity confers protection against breast cancer, the molecular mechanisms by which this occurs is still not well understood. Healthy parous and nulliparous women were recruited for this study. We assessed serum protein profiles of early parous, late parous, and nulliparous women using the Phospho Explorer antibody array. Significantly altered proteins identified were validated by Western blot analysis. In silico analysis was performed with the data obtained. Our findings indicate increased phosphorylation levels of CDK1, AKT1 and Epo-R increased cell cycle and cell proliferation in late/nulliparous women. Increased levels of LIMK1, paxillin, caveolin-1, and tyrosine hydroxylase in late/nulliparous women demonstrate enhanced cell stress while decreased activity of p-p53 and pRAD51 in late/nulliparous women indicates decreased apoptosis and increased genomic instability. Further, increased levels of pFAK, pCD3zeta, pSTAT5B, MAP3K8 in early parous women favor enhanced innate/adaptive immunity. Overall, we have identified a unique protein signature that is responsible for the decreased risk of breast cancer and these proteins can also serve as biomarkers to predict the risk of breast cancer.

Keywords: biomarkers; breast cancer risk; parity; protection; serum proteins

References

  1. Oncogene. 2014 Jun 19;33(25):3225-34 - PubMed
  2. Nat Med. 2011 Apr;17(4):461-9 - PubMed
  3. Mol Cell. 2006 Feb 3;21(3):307-15 - PubMed
  4. Ann Surg. 2014 Apr;259(4):793-9 - PubMed
  5. Immunity. 2012 Apr 20;36(4):586-99 - PubMed
  6. Oncogene. 1998 Jul 23;17(3):313-25 - PubMed
  7. J Cell Sci. 2007 Jan 1;120(Pt 1):137-48 - PubMed
  8. Curr Mol Med. 2013 Feb;13(2):266-81 - PubMed
  9. Med Res Rev. 2012 Sep;32(5):968-98 - PubMed
  10. EMBO Mol Med. 2013 Sep;5(9):1335-50 - PubMed
  11. Br J Cancer. 1990 Feb;61(2):298-302 - PubMed
  12. BMJ. 2000 Dec 9;321(7274):1424-5 - PubMed
  13. Natl Cancer Inst Monogr. 1979 Nov;(53):187-93 - PubMed
  14. Br J Cancer. 1981 Jun;43(6):826-31 - PubMed
  15. Eur J Cancer Prev. 2005 Apr;14(2):129-37 - PubMed
  16. J Natl Cancer Inst. 1974 Sep;53(3):609-14 - PubMed
  17. Breast Cancer Res Treat. 2004 Oct;87(3):277-90 - PubMed
  18. Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1696-701 - PubMed
  19. J Natl Cancer Inst. 1985 Apr;74(4):741-5 - PubMed
  20. Clin Interv Aging. 2007;2(1):3-16 - PubMed
  21. BMC Med Genomics. 2012 Oct 11;5:46 - PubMed
  22. CA Cancer J Clin. 2014 Jan-Feb;64(1):52-62 - PubMed
  23. Int J Cancer. 2012 Sep 1;131(5):1059-70 - PubMed
  24. Breast Cancer Res. 2004;6(4):R423-36 - PubMed
  25. J Exp Med. 2008 Nov 24;205(12):2803-12 - PubMed
  26. Cancer Res. 2007 Dec 15;67(24):11732-41 - PubMed
  27. J Biol Chem. 2001 Mar 16;276(11):8094-103 - PubMed
  28. Mol Cell Biol. 2001 Apr;21(8):2743-54 - PubMed
  29. Cell Physiol Biochem. 2014;34(2):491-505 - PubMed
  30. Carcinogenesis. 1995 Nov;16(11):2847-53 - PubMed
  31. Cancer Res. 2006 Jun 15;66(12):6421-31 - PubMed
  32. Cell Physiol Biochem. 2015;37(5):1671-85 - PubMed
  33. Adv Pharmacol. 2013;68:359-97 - PubMed
  34. Int J Cancer. 1983 Jun 15;31(6):701-4 - PubMed
  35. Recent Pat Anticancer Drug Discov. 2014 May;9(2):153-75 - PubMed
  36. Cell. 2002 Jan 25;108(2):261-9 - PubMed
  37. Mol Endocrinol. 2002 Sep;16(9):2034-51 - PubMed
  38. Cancer Prev Res (Phila). 2010 Mar;3(3):301-11 - PubMed
  39. Anticancer Res. 1998 Nov-Dec;18(6A):4115-21 - PubMed
  40. Mol Biol Cell. 2011 Feb 1;22(3):327-41 - PubMed
  41. Mol Cell Biol. 2011 Apr;31(7):1478-91 - PubMed
  42. Mol Cancer. 2011 Jun 18;10:75 - PubMed
  43. Carcinogenesis. 2002 Jun;23(6):977-82 - PubMed
  44. Oncol Rep. 2006 Apr;15(4):903-11 - PubMed
  45. Cancer Res. 2013 Jun 15;73(12):3783-95 - PubMed
  46. Lancet. 2012 Nov 24;380(9856):1840-50 - PubMed
  47. Biochem Biophys Res Commun. 2009 May 1;382(2):286-91 - PubMed
  48. Oncogene. 2000 Nov 20;19(49):5636-42 - PubMed
  49. Cancer Lett. 1995 Apr 14;90(2):171-81 - PubMed

Substances

MeSH terms

Publication Types