Display options
Share it on

Radiat Oncol J. 2016 Mar;34(1):64-75. doi: 10.3857/roj.2016.34.1.64. Epub 2016 Mar 30.

A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images.

Radiation oncology journal

Sang Hoon Jung, Jeong Il Yu, Hee Chul Park, Do Hoon Lim, Youngyih Han

Affiliations

  1. Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
  2. Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.; Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea.

PMID: 27104169 PMCID: PMC4831971 DOI: 10.3857/roj.2016.34.1.64

Abstract

PURPOSE: In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images.

MATERIALS AND METHODS: In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician.

RESULTS: The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median R(2) of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%).

CONCLUSION: Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer.

Keywords: Computer assisted image analysis; Gadolinium DTPA; Liver neoplasms; Magnetic resonance imaging; Radiation effects; Stereotactic body radiotherapy

References

  1. Radiother Oncol. 2012 Sep;104(3):374-8 - PubMed
  2. Int J Radiat Oncol Biol Phys. 2014 Feb 1;88(2):306-11 - PubMed
  3. Korean J Radiol. 2004 Oct-Dec;5(4):231-9 - PubMed
  4. AJR Am J Roentgenol. 2012 Nov;199(5):1010-7 - PubMed
  5. Semin Radiat Oncol. 2001 Jul;11(3):240-6 - PubMed
  6. HPB (Oxford). 2010 Oct;12(8):567-76 - PubMed
  7. PLoS One. 2013 Dec 31;8(12):e85658 - PubMed
  8. Acta Radiol. 2001 Sep;42(5):526-31 - PubMed
  9. Med Dosim. 2014 Autumn;39(3):212-7 - PubMed
  10. Eur J Radiol. 2015 Mar;84(3):339-45 - PubMed
  11. Int J Radiat Oncol Biol Phys. 2006 Nov 1;66(3):780-91 - PubMed
  12. J Magn Reson Imaging. 1997 Jul-Aug;7(4):683-8 - PubMed
  13. Int J Radiat Oncol Biol Phys. 2013 Sep 1;87(1):22-32 - PubMed
  14. Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3 Suppl):S94-100 - PubMed
  15. Int J Radiat Oncol Biol Phys. 2009 Apr 1;73(5):1414-24 - PubMed
  16. Int J Radiat Oncol Biol Phys. 2012 Nov 1;84(3):e441-6 - PubMed
  17. J Med Imaging Radiat Oncol. 2016 Apr;60(2):255-9 - PubMed
  18. Radiology. 2011 Sep;260(3):727-33 - PubMed
  19. Strahlenther Onkol. 2011 Apr;187(4):238-44 - PubMed
  20. Sci Rep. 2014 Jul 08;4:5621 - PubMed
  21. Cancer Radiother. 2011 Aug;15(5):421-5 - PubMed
  22. Br J Radiol. 2013 Jan;86(1021):20120221 - PubMed
  23. Radiat Oncol. 2011 Apr 17;6:40 - PubMed
  24. Int J Radiat Oncol Biol Phys. 2003 Oct 1;57(2):444-51 - PubMed
  25. Eur J Radiol. 2011 Feb;77(2):325-9 - PubMed
  26. AJR Am J Roentgenol. 1995 Jul;165(1):79-84 - PubMed
  27. Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):1047-57 - PubMed
  28. Radiographics. 1997 Nov-Dec;17 (6):1455-73 - PubMed
  29. Int J Hepatol. 2011;2011:489342 - PubMed
  30. Radiat Oncol J. 2012 Dec;30(4):189-96 - PubMed
  31. Br J Radiol. 2010 Dec;83(996):1063-71 - PubMed
  32. Int J Radiat Oncol Biol Phys. 2002 Sep 1;54(1):150-5 - PubMed

Publication Types