Display options
Share it on

Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16280-5. doi: 10.1073/pnas.1409796111. Epub 2014 Nov 05.

Copper is an endogenous modulator of neural circuit spontaneous activity.

Proceedings of the National Academy of Sciences of the United States of America

Sheel C Dodani, Alana Firl, Jefferson Chan, Christine I Nam, Allegra T Aron, Carl S Onak, Karla M Ramos-Torres, Jaeho Paek, Corey M Webster, Marla B Feller, Christopher J Chang

Affiliations

  1. Departments of Chemistry and.
  2. Vision Sciences Graduate Program, Department of Optometry.
  3. Departments of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720.
  4. Molecular and Cell Biology.
  5. Molecular and Cell Biology, Helen Wills Neuroscience Institute, and.
  6. Departments of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720 Molecular and Cell Biology, Helen Wills Neuroscience Institute, and [email protected].

PMID: 25378701 PMCID: PMC4246333 DOI: 10.1073/pnas.1409796111

Abstract

For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

Keywords: copper signaling; fluorescent sensor; molecular imaging; neural activity

References

  1. Physiol Rev. 2007 Jul;87(3):1011-46 - PubMed
  2. Crit Rev Neurobiol. 2006;18(1-2):13-23 - PubMed
  3. Chem Commun (Camb). 2011 Jul 7;47(25):7146-8 - PubMed
  4. Nat Chem Biol. 2011 Aug;7(8):504-11 - PubMed
  5. J Neurochem. 2011 Oct;119(1):78-88 - PubMed
  6. J Biol Chem. 2011 Sep 30;286(39):34356-72 - PubMed
  7. J Am Chem Soc. 2011 Oct 12;133(40):15906-9 - PubMed
  8. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1737-42 - PubMed
  9. J Gen Physiol. 2012 Mar;139(3):219-34 - PubMed
  10. Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3492-7 - PubMed
  11. Environ Sci Technol. 2012 Mar 6;46(5):2959-66 - PubMed
  12. Plant Cell. 2012 Feb;24(2):738-61 - PubMed
  13. Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13733-8 - PubMed
  14. J Neurosci Res. 2013 Jan;91(1):2-19 - PubMed
  15. J Neurophysiol. 2013 Apr;109(7):1969-78 - PubMed
  16. ACS Chem Biol. 2013 May 17;8(5):856-65 - PubMed
  17. Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14771-6 - PubMed
  18. Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):14995-5000 - PubMed
  19. Nat Chem Biol. 2014 Jan;10(1):21-8 - PubMed
  20. Metallomics. 2014 Mar;6(3):654-61 - PubMed
  21. Dev Cell. 2014 Jun 23;29(6):686-700 - PubMed
  22. J Am Chem Soc. 2006 Jan 11;128(1):10-1 - PubMed
  23. Nat Chem Biol. 2008 Mar;4(3):176-85 - PubMed
  24. Chem Rev. 2008 May;108(5):1517-49 - PubMed
  25. Annu Rev Neurosci. 2008;31:479-509 - PubMed
  26. Neuron. 2008 Jul 10;59(1):43-55 - PubMed
  27. J Neurosci. 2009 Jan 28;29(4):1077-86 - PubMed
  28. Nat Rev Neurosci. 2010 Jan;11(1):18-29 - PubMed
  29. Nature. 2010 Jun 3;465(7298):645-8 - PubMed
  30. Annu Rev Biochem. 2010;79:537-62 - PubMed
  31. Nat Chem Biol. 2014 Dec;10(12):1034-42 - PubMed
  32. Metallomics. 2010 Sep;2(9):596-608 - PubMed
  33. Curr Opin Chem Biol. 2000 Apr;4(2):184-91 - PubMed
  34. J Struct Biol. 2000 Jun;130(2-3):209-16 - PubMed
  35. Proc Natl Acad Sci U S A. 2001 Jun 5;98(12):6842-7 - PubMed
  36. Annu Rev Biochem. 2001;70:677-701 - PubMed
  37. Trends Neurosci. 2001 Nov;24(11 Suppl):S15-20 - PubMed
  38. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3605-10 - PubMed
  39. Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):3617-22 - PubMed
  40. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11065-9 - PubMed
  41. Nat Rev Drug Discov. 2004 Mar;3(3):205-14 - PubMed
  42. Synapse. 1988;2(4):412-5 - PubMed
  43. Anal Biochem. 1992 Dec;207(2):267-79 - PubMed
  44. Eur J Biochem. 1996 Mar 1;236(2):697-705 - PubMed
  45. Nature. 1997 Dec 18-25;390(6661):684-7 - PubMed
  46. Biochem Biophys Res Commun. 1999 Aug 2;261(2):225-32 - PubMed
  47. J Neurosci. 2005 Jan 5;25(1):239-46 - PubMed
  48. Nat Rev Neurol. 2011 Jan;7(1):15-29 - PubMed
  49. Appl Environ Microbiol. 2011 Jan;77(2):416-26 - PubMed
  50. Appl Environ Microbiol. 2011 Feb;77(3):794-802 - PubMed
  51. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):5980-5 - PubMed
  52. J Am Chem Soc. 2011 Jun 8;133(22):8606-16 - PubMed
  53. Physiol Rev. 2005 Jul;85(3):883-941 - PubMed
  54. PLoS Pathog. 2014 Jul;10(7):e1004280 - PubMed
  55. Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14919-24 - PubMed
  56. PLoS One. 2007;2(3):e334 - PubMed

Substances

MeSH terms

Publication Types

Grant support