Display options
Share it on

Am J Physiol Cell Physiol. 2014 Aug 15;307(4):C320-37. doi: 10.1152/ajpcell.00068.2013. Epub 2014 Jun 04.

Transepithelial glucose transport and Na+/K+ homeostasis in enterocytes: an integrative model.

American journal of physiology. Cell physiology

Kristian Thorsen, Tormod Drengstig, Peter Ruoff

Affiliations

  1. Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway; and [email protected].
  2. Department of Electrical Engineering and Computer Science, University of Stavanger, Stavanger, Norway; and.
  3. Centre for Organelle Research, University of Stavanger, Stavanger, Norway.

PMID: 24898586 PMCID: PMC4137142 DOI: 10.1152/ajpcell.00068.2013

Abstract

The uptake of glucose and the nutrient coupled transcellular sodium traffic across epithelial cells in the small intestine has been an ongoing topic in physiological research for over half a century. Driving the uptake of nutrients like glucose, enterocytes must have regulatory mechanisms that respond to the considerable changes in the inflow of sodium during absorption. The Na-K-ATPase membrane protein plays a major role in this regulation. We propose the hypothesis that the amount of active Na-K-ATPase in enterocytes is directly regulated by the concentration of intracellular Na(+) and that this regulation together with a regulation of basolateral K permeability by intracellular ATP gives the enterocyte the ability to maintain ionic Na(+)/K(+) homeostasis. To explore these regulatory mechanisms, we present a mathematical model of the sodium coupled uptake of glucose in epithelial enterocytes. Our model integrates knowledge about individual transporter proteins including apical SGLT1, basolateral Na-K-ATPase, and GLUT2, together with diffusion and membrane potentials. The intracellular concentrations of glucose, sodium, potassium, and chloride are modeled by nonlinear differential equations, and molecular flows are calculated based on experimental kinetic data from the literature, including substrate saturation, product inhibition, and modulation by membrane potential. Simulation results of the model without the addition of regulatory mechanisms fit well with published short-term observations, including cell depolarization and increased concentration of intracellular glucose and sodium during increased concentration of luminal glucose/sodium. Adding regulatory mechanisms for regulation of Na-K-ATPase and K permeability to the model show that our hypothesis predicts observed long-term ionic homeostasis.

Copyright © 2014 the American Physiological Society.

Keywords: enterocytes; epithelial transport; homeostasis; ionic regulation; mathematical modeling

References

  1. Biophys J. 1983 Nov;44(2):153-70 - PubMed
  2. Bull Math Biol. 1999 Nov;61(6):1065-91 - PubMed
  3. Biophys J. 1990 Aug;58(2):391-401 - PubMed
  4. Am J Physiol Cell Physiol. 2004 Oct;287(4):C1041-7 - PubMed
  5. Am J Physiol. 1974 May;226(5):1131-41 - PubMed
  6. Science. 1984 Jun 15;224(4654):1237-9 - PubMed
  7. Biophys J. 2011 Jan 5;100(1):52-9 - PubMed
  8. J Membr Biol. 2005 Mar;204(1):23-32 - PubMed
  9. Am J Physiol Endocrinol Metab. 2010 Feb;298(2):E141-5 - PubMed
  10. J Cell Biol. 1972 Jun;53(3):704-14 - PubMed
  11. Ann Surg. 2010 May;251(5):865-71 - PubMed
  12. J Gen Physiol. 2012 Oct;140(4):361-74 - PubMed
  13. Biophys J. 1979 Aug;27(2):165-86 - PubMed
  14. Science. 1991 Nov 8;254(5033):847-50 - PubMed
  15. Physiol Rev. 2008 Jul;88(3):1119-82 - PubMed
  16. Biophys J. 1998 Dec;75(6):2858-67 - PubMed
  17. J Membr Biol. 1989 Aug;110(1):87-95 - PubMed
  18. Ann N Y Acad Sci. 2002 Nov;976:248-58 - PubMed
  19. J Clin Invest. 1993 Oct;92(4):1889-95 - PubMed
  20. Am J Physiol. 1979 Jan;236(1):F1-8 - PubMed
  21. J Physiol. 2001 Mar 15;531(Pt 3):585-95 - PubMed
  22. Am J Physiol Cell Physiol. 2000 Sep;279(3):C634-8 - PubMed
  23. J Membr Biol. 1987;100(2):149-64 - PubMed
  24. J Physiol. 1972 Dec;227(1):217-31 - PubMed
  25. Biochim Biophys Acta. 1975 Nov 17;413(1):104-15 - PubMed
  26. Am J Physiol Cell Physiol. 2009 Jun;296(6):C1279-90 - PubMed
  27. Am J Physiol. 1993 Oct;265(4 Pt 1):G677-85 - PubMed
  28. Am J Physiol Renal Physiol. 2000 Jul;279(1):F24-45 - PubMed
  29. J Membr Biol. 1982;68(3):215-25 - PubMed
  30. J Gen Physiol. 2005 Jan;125(1):13-36 - PubMed
  31. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6418-22 - PubMed
  32. J Membr Biol. 1987;97(3):259-66 - PubMed
  33. J Physiol. 2003 Dec 1;553(Pt 2):561-74 - PubMed
  34. Am J Physiol. 1973 Aug;225(2):467-75 - PubMed
  35. J Physiol. 2007 Mar 1;579(Pt 2):345-61 - PubMed
  36. Am J Physiol. 1992 Nov;263(5 Pt 2):F784-98 - PubMed
  37. J Gen Physiol. 1989 Sep;94(3):539-65 - PubMed
  38. Surgery. 2012 Jan;151(1):13-25 - PubMed
  39. Am J Physiol. 1990 Dec;259(6 Pt 1):C279-85 - PubMed
  40. Am J Physiol. 1983 Apr;244(4):G375-85 - PubMed
  41. J Gen Physiol. 1995 May;105(5):617-41 - PubMed
  42. Physiol Rev. 2011 Apr;91(2):733-94 - PubMed
  43. J Membr Biol. 1984;82(1):67-82 - PubMed
  44. Ann N Y Acad Sci. 1985;456:136-8 - PubMed
  45. J Physiol. 1985 Jun;363:271-85 - PubMed
  46. Am J Physiol. 1985 Aug;249(2 Pt 1):G236-45 - PubMed
  47. Biophys J. 1987 Apr;51(4):533-46 - PubMed
  48. J Bioenerg Biomembr. 1992 Jun;24(3):263-70 - PubMed
  49. Am J Physiol Cell Physiol. 2003 Oct;285(4):C737-49 - PubMed
  50. J Gen Physiol. 1972 Mar;59(3):318-46 - PubMed
  51. J Physiol. 1973 May;231(1):143-65 - PubMed
  52. Comp Biochem Physiol B Biochem Mol Biol. 1998 Mar;119(3):527-37 - PubMed
  53. J Gen Physiol. 1969 Mar;53(3):362-83 - PubMed
  54. J Phys Chem B. 2008 Dec 25;112(51):16752-8 - PubMed
  55. Am J Physiol Cell Physiol. 2000 Sep;279(3):C541-66 - PubMed
  56. Histochem Cell Biol. 2011 Feb;135(2):183-94 - PubMed
  57. Am J Physiol. 1991 Jan;260(1 Pt 1):G26-33 - PubMed
  58. Am J Physiol. 1996 Jun;270(6 Pt 1):G919-26 - PubMed
  59. J Gen Physiol. 1971 Jun;57(6):639-63 - PubMed
  60. J Membr Biol. 1979 Apr 12;46(1):27-39 - PubMed
  61. J Physiol. 2000 Jun 1;525 Pt 2:343-53 - PubMed
  62. J Membr Biol. 1992 Jan;125(1):49-62 - PubMed
  63. Proc Natl Acad Sci U S A. 1974 May;71(5):1618-22 - PubMed
  64. Comp Biochem Physiol A Mol Integr Physiol. 1998 Sep;121(1):45-58 - PubMed
  65. J Membr Biol. 2001 Dec 1;184(3):233-9 - PubMed
  66. Am J Physiol. 1983 Oct;245(4):G504-10 - PubMed
  67. J Physiol. 2001 Mar 15;531(Pt 3):631-44 - PubMed
  68. Rev Esp Fisiol. 1979 Sep;35(3):359-66 - PubMed
  69. J Gen Physiol. 1989 Sep;94(3):511-37 - PubMed
  70. Kidney Int. 1986 Jan;29(1):10-20 - PubMed
  71. Am J Physiol. 1986 May;250(5 Pt 2):F860-73 - PubMed
  72. J Membr Biol. 1983;76(1):27-56 - PubMed
  73. J Biol Chem. 1990 Jul 15;265(20):11676-81 - PubMed
  74. Am J Physiol. 1991 Oct;261(4 Pt 2):F634-9 - PubMed
  75. J Membr Biol. 1987;100(2):123-36 - PubMed
  76. J Membr Biol. 1983;75(3):205-18 - PubMed
  77. J Membr Biol. 1992 Jan;125(1):63-79 - PubMed
  78. Annu Rev Physiol. 2005;67:411-43 - PubMed
  79. J Gen Physiol. 1989 May;93(5):903-41 - PubMed
  80. J Biol Chem. 2002 Mar 29;277(13):11489-96 - PubMed
  81. FEBS Lett. 1985 Oct 21;191(1):87-91 - PubMed
  82. Am J Physiol. 1996 Feb;270(2 Pt 1):C600-7 - PubMed
  83. Am J Physiol. 1994 Aug;267(2 Pt 2):F237-48 - PubMed
  84. J Gen Physiol. 1976 Oct;68(4):441-63 - PubMed
  85. Bull Math Biol. 2004 Sep;66(5):1201-40 - PubMed
  86. Biophys J. 2009 Sep 2;97(5):1244-53 - PubMed
  87. J Physiol. 2007 Jul 1;582(Pt 1):379-92 - PubMed
  88. J Membr Biol. 2003 May 15;193(2):67-78 - PubMed
  89. J Membr Biol. 1983;71(1-2):89-94 - PubMed
  90. Annu Rev Physiol. 2002;64:1-18 - PubMed
  91. Biophys J. 2012 Nov 7;103(9):2000-10 - PubMed

Substances

MeSH terms

Publication Types