Display options
Share it on

Biophys J. 2008 Oct;95(8):3724-37. doi: 10.1529/biophysj.108.137349. Epub 2008 Jul 18.

Effect of nonuniform interstitial space properties on impulse propagation: a discrete multidomain model.

Biophysical journal

Sarah F Roberts, Jeroen G Stinstra, Craig S Henriquez

Affiliations

  1. Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, USA. [email protected]

PMID: 18641070 PMCID: PMC2553133 DOI: 10.1529/biophysj.108.137349

Abstract

This work presents a discrete multidomain model that describes ionic diffusion pathways between connected cells and within the interstitium. Unlike classical models of impulse propagation, the intracellular and extracellular spaces are represented as spatially distinct volumes with dynamic/static boundary conditions that electrically couple neighboring spaces. The model is used to investigate the impact of nonuniform geometrical and electrical properties of the interstitial space surrounding a fiber on conduction velocity and action potential waveshape. Comparison of the multidomain and bidomain models shows that although the conduction velocity is relatively insensitive to cases that confine 50% of the membrane surface by narrow extracellular depths (> or =2 nm), the action potential morphology varies greatly around the fiber perimeter, resulting in changes in the magnitude of extracellular potential in the tight spaces. Results also show that when the conductivity of the tight spaces is sufficiently reduced, the membrane adjacent to the tight space is eliminated from participating in propagation, and the conduction velocity increases. Owing to its ability to describe the spatial discontinuity of cardiac microstructure, the discrete multidomain can be used to determine appropriate tissue properties for use in classical macroscopic models such as the bidomain during normal and pathophysiological conditions.

References

  1. Comput Cardiol. 2006;33:41-44 - PubMed
  2. J Physiol. 1978 Oct;283:263-82 - PubMed
  3. Histochem J. 1989 Nov;21(11):629-33 - PubMed
  4. Am J Cardiol. 1970 Feb;25(2):184-94 - PubMed
  5. Circ Res. 1991 Jan;68(1):162-73 - PubMed
  6. Cardiovasc Res. 2004 May 1;62(2):368-77 - PubMed
  7. Am J Anat. 1980 Dec;159(4):389-94 - PubMed
  8. Circ Res. 1988 Jul;63(1):72-80 - PubMed
  9. J Cell Biol. 1974 Mar;60(3):586-601 - PubMed
  10. Ann Biomed Eng. 1997 Mar-Apr;25(2):315-34 - PubMed
  11. Ann Biomed Eng. 1983;11(3-4):149-57 - PubMed
  12. J Physiol. 1976 Feb;255(2):335-46 - PubMed
  13. Circulation. 1995 Aug 1;92(3):587-94 - PubMed
  14. Ann Biomed Eng. 2005 Dec;33(12):1743-51 - PubMed
  15. Ann Biomed Eng. 1996 Nov-Dec;24(6):662-74 - PubMed
  16. Circ Res. 1990 Jun;66(6):1461-73 - PubMed
  17. Crit Rev Biomed Eng. 1993;21(1):1-77 - PubMed
  18. Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H263-79 - PubMed
  19. Circ Res. 1991 Jun;68(6):1501-26 - PubMed
  20. J Physiol. 1952 Nov;118(3):348-60 - PubMed
  21. Physiol Rev. 2004 Apr;84(2):431-88 - PubMed
  22. Q J Exp Physiol. 1987 Oct;72(4):409-37 - PubMed
  23. Circ Res. 1987 Aug;61(2):271-9 - PubMed
  24. Biophys J. 1964 Jul;4:317-28 - PubMed
  25. J Physiol. 1970 Nov;210(4):1041-54 - PubMed
  26. IEEE Trans Biomed Eng. 1990 Sep;37(9):861-75 - PubMed
  27. IEEE Trans Biomed Eng. 1985 Oct;32(10):743-55 - PubMed
  28. Am J Physiol. 1985 Jun;248(6 Pt 2):H792-803 - PubMed
  29. J Cardiovasc Electrophysiol. 1995 Jun;6(6):498-510 - PubMed
  30. Circ Res. 1979 May;44(5):701-12 - PubMed

MeSH terms

Publication Types

Grant support