Display options
Share it on

Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4613-8. doi: 10.1073/pnas.95.8.4613.

Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects.

Proceedings of the National Academy of Sciences of the United States of America

S C Ghivizzani, E R Lechman, R Kang, C Tio, J Kolls, C H Evans, P D Robbins

Affiliations

  1. Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh PA 1526, USA.

PMID: 9539786 PMCID: PMC22538 DOI: 10.1073/pnas.95.8.4613

Abstract

Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor alpha (TNFalpha) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFalpha receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides.

References

  1. Nat Biotechnol. 1996 Nov;14(11):1570-3 - PubMed
  2. Adv Drug Deliv Rev. 1997 Aug 11;27(1):41-57 - PubMed
  3. Br J Exp Pathol. 1988 Oct;69(5):739-48 - PubMed
  4. Clin Exp Immunol. 1989 Feb;75(2):306-10 - PubMed
  5. N Engl J Med. 1997 Jul 17;337(3):141-7 - PubMed
  6. J Clin Invest. 1993 Aug;92(2):1085-92 - PubMed
  7. Arthritis Rheum. 1997 Mar;40(3):397-409 - PubMed
  8. Mol Cell Biol. 1987 Feb;7(2):725-37 - PubMed
  9. J Virol. 1996 Nov;70(11):7498-509 - PubMed
  10. J Immunol. 1997 Apr 1;158(7):3492-8 - PubMed
  11. J Rheumatol. 1996 Nov;23(11):1849-55 - PubMed
  12. FASEB J. 1997 Jul;11(8):615-23 - PubMed
  13. Gen Pharmacol. 1994 Nov;25(7):1285-96 - PubMed
  14. Clin Exp Rheumatol. 1994 Jul-Aug;12(4):435-41 - PubMed
  15. Hum Gene Ther. 1996 Jun 20;7(10):1261-80 - PubMed
  16. Ann Rheum Dis. 1992 Aug;51(8):1014-8 - PubMed
  17. J Immunol. 1996 May 1;156(9):3558-62 - PubMed
  18. Hum Gene Ther. 1996 Mar 1;7(4):499-506 - PubMed
  19. Arthritis Rheum. 1997 Jun;40(6):1012-9 - PubMed
  20. Science. 1986 Nov 14;234(4778):856-9 - PubMed
  21. Adv Immunol. 1997;64:283-350 - PubMed
  22. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4407-11 - PubMed
  23. Lancet. 1994 Oct 22;344(8930):1105-10 - PubMed
  24. J Immunol. 1994 Nov 15;153(10):4766-74 - PubMed
  25. Biochem Soc Trans. 1997 May;25(2):533-7 - PubMed
  26. Arthritis Rheum. 1995 Feb;38(2):151-60 - PubMed
  27. In Vitro Cell Dev Biol. 1988 Oct;24(10):1015-22 - PubMed
  28. Adv Immunol. 1993;54:167-227 - PubMed
  29. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):402-6 - PubMed
  30. Biochim Biophys Acta. 1986 Sep 4;883(2):173-7 - PubMed
  31. Hum Gene Ther. 1995 Mar;6(3):307-16 - PubMed
  32. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):215-9 - PubMed
  33. Arthritis Rheum. 1996 May;39(5):820-8 - PubMed
  34. Virology. 1973 Apr;52(2):456-67 - PubMed

Substances

MeSH terms

Publication Types

Grant support