Display options
Share it on

Hum Mutat. 2022 Jan 06; doi: 10.1002/humu.24326. Epub 2022 Jan 06.

Clinico-radiological features, molecular spectrum, and identification of prognostic factors in developmental and epileptic encephalopathy due to inosine triphosphate pyrophosphatase (ITPase) deficiency.

Human mutation

Marcello Scala, Saskia B Wortmann, Namik Kaya, Menno D Stellingwerff, Angela Pistorio, Emma Glamuzina, Clara D van Karnebeek, Cristina Skrypnyk, Katarzyna Iwanicka-Pronicka, Dorota Piekutowska-Abramczuk, Elżbieta Ciara, Frederic Tort, Beth Sheidley, Annapurna Poduri, Parul Jayakar, Anuj Jayakar, Jariya Upadia, Nicolette Walano, Tobias B Haack, Holger Prokisch, Hesham Aldhalaan, Ehsan G Karimiani, Yilmaz Yildiz, Ahmet C Ceylan, Teresa Santiago-Sim, Amy Dameron, Hui Yang, Mehran B Toosi, Farah Ashrafzadeh, Javad Akhondian, Shima Imannezhad, Hanieh S Mirzadeh, Shazia Maqbool, Aisha Farid, Mohamed A Al-Muhaizea, Meznah O Alshwameen, Lama Aldowsari, Maysoon Alsagob, Ashwaq Alyousef, Rawan AlMass, Aljouhra AlHargan, Ali H Alwadei, Maha M AlRasheed, Dilek Colak, Hanan Alqudairy, Sameena Khan, Matthew A Lines, M Ángeles García Cazorla, Antonia Ribes, Eva Morava, Farah Bibi, Shahzad Haider, Matteo P Ferla, Jenny C Taylor, Hessa S Alsaif, Abdulwahab Firdous, Mais Hashem, Chingiz Shashkin, Kairgali Koneev, Rauan Kaiyrzhanov, Stephanie Efthymiou, Queen Square Genomics, Thomas Schmitt-Mechelke, Andreas Ziegler, Mahmoud Y Issa, Hasnaa M Elbendary, Pasquale Striano, Fowzan S Alkuraya, Maha S Zaki, Joseph G Gleeson, Tahsin Stefan Barakat, Jorgen Bierau, Marjo S van der Knaap, Reza Maroofian, Henry Houlden

Affiliations

  1. Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy.
  2. Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
  3. UCL Queen Square Institute of Neurology, University College London, London, UK.
  4. Amalia Children's Hospital, Radboud University Nijmegen, Nijmegen, The Netherlands.
  5. University Children's Hospital, Paracelsus Medical University, Salzburg, Austria.
  6. Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
  7. Department of Translational Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
  8. Department of Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, The Netherlands.
  9. Clinical Epidemiology and Biostatistics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
  10. Adult and Paediatric National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand.
  11. Departments of Pediatrics and Clinical Genetics, Academic Medical Centre, Amsterdam, The Netherlands.
  12. Department of Molecular Medicine, Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain.
  13. Department of Medical Genetics, The Children's Memorial Health Institute, Warsaw, Poland.
  14. Department of Audiology and Phoniatrics, The Children's Memorial Health Institute, Warsaw, Poland.
  15. Secció d'Errors Congènits del Metabolisme-IBC, Servei de Bioquímica iGenètica Molecular, Hospital Clínic, IDIBAPS, CIBERER, Barcelona, Spain.
  16. Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusettes, USA.
  17. Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Boston Children's Hospital, Boston, Massachusettes, USA.
  18. Department of Neurology, Harvard Medical School, Boston, Massachusettes, USA.
  19. Nicklaus Children's Hospital, Miami, Florida, USA.
  20. Tulane University School of Medicine, New Orleans, Louisiana, USA.
  21. Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
  22. Institute of Human Genetics, Technische Universität München, Munich, Germany.
  23. Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany.
  24. Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
  25. Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran.
  26. Molecular and Clinical Sciences Institute, St. George's University of London, Cranmer Terrace, London, UK.
  27. Innovative Medical Research Center, Islamic Azad University, Mashhad Branch, Mashhad, Iran.
  28. Pediatric Metabolic Diseases Clinic, Dr. Sami Ulus Training and Research Hospital for Maternity and Children, Ankara, Turkey.
  29. Department of Medical Genetics, Ankara City Hospital, Ankara, Turkey.
  30. GeneDx, Gaithersburg, Maryland, USA.
  31. Pediatric Neurology Department, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
  32. Department of Pediatrics, Mashhad University of Medical Sciences, Mashhad, Iran.
  33. Department of Pediatric Diseases, Mashhad University of Medical Sciences, Mashhad, Iran.
  34. Development and Behavioral Pediatrics Department, Institute of Child Health and The Children Hospital, Lahore, Pakistan.
  35. Neurosciences Department, King Fahad Medical City, Riyadh, Saudi Arabia.
  36. Department of Clinical Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  37. Department of Biostatistics, Epidemiology and Scientific Computing, KFSHRC, Riyadh, Kingdom of Saudi Arabia.
  38. Medical Genetics, Department of Pediatrics, Alberta Children's Hospital, Calgary, Canada.
  39. Inborn Errors of Metabolism Unit, Hospital Sant Joan de Déu, Barcelona, Spain.
  40. Department of Clinical Genomics, Laboratory of Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.
  41. Institute of Biochemistry and Biotechnology, Pir Mehar Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
  42. Izzat Ali Shah Hospital, Lalarukh Wah Cantt, Rawalpindi, Pakistan.
  43. NIHR Oxford BRC Genomic Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
  44. International University of Postgraduate Education, Almaty, Kazakhstan.
  45. Department of Neurology and Neurosurgery, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan.
  46. Department of Neuropaediatrics, Children's Hospital, Cantonal Hospital, Lucerne, Switzerland.
  47. Zentrum für Kinder und Jugendmedizin Heidelberg, Sektion Neuropädiatrie und Stoffwechselmedizin, Universitätsklinikum Heidelberg, Heidelberg, Germany.
  48. Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt.
  49. Department of Anatomy and Cell Biology, Alfaisal University, Riyadh, Saudi Arabia.
  50. Department of Neuroscience, Rady Children's Institute for Genomic Medicine, Howard Hughes Medical Institute, University of California, San Diego, California, USA.
  51. Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
  52. Laboratory of Biochemical Genetics, Department of Clinical Genetics, Maastricht University Hospital, Maastricht, The Netherlands.
  53. Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands.

PMID: 34989426 DOI: 10.1002/humu.24326

Abstract

Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyrophosphatase, an essential enzyme in purine metabolism. We delineate the genotypic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse clinical outcomes. We investigated a cohort of 28 new patients and reviewed previously described cases, providing a comprehensive characterization of 40 subjects. Exome sequencing was performed to identify underlying ITPA pathogenic variants. Brain MRI (magnetic resonance imaging) scans were systematically analyzed to delineate the neuroradiological spectrum. Survival curves according to the Kaplan-Meier method and log-rank test were used to investigate outcome predictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic variants, including 14 novel variants, and two deletions. All subjects showed profound developmental delay, microcephaly, and refractory epilepsy followed by neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of delayed myelination and restricted diffusion of early myelinating structures. Congenital microcephaly and cardiac involvement were statistically significant novel clinical predictors of adverse outcomes. We refined the molecular, clinical, and neuroradiological characterization of ITPase deficiency, and identified new clinical predictors which may have a potentially important impact on diagnosis, counseling, and follow-up of affected individuals.

© 2022 The Authors. Human Mutation published by Wiley Periodicals LLC.

Keywords: ITPA; ITPase; congenital microcephaly; developmental and epileptic encephalopathy 35; heart disease; white matter abnormalities

References

  1. Abolhassani, N., Iyama, T., Tsuchimoto, D., Sakumi, K., Ohno, M., Behmanesh, M., & Nakabeppu, Y. (2010). NUDT16 and ITPA play a dual protective role in maintaining chromosome stability and cell growth by eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals. Nucleic Acids Research, 38, 2891-2903. https://doi.org/10.1093/nar/gkp1250 - PubMed
  2. Assi, L., Saklawi, Y., Karam, P. E., & Obeid, M. (2017). Treatable genetic metabolic epilepsies. Current Treatment Options in Neurology, 19, 30. https://doi.org/10.1007/s11940-017-0467-0 - PubMed
  3. Behmanesh, M., Sakumi, K., Abolhassani, N., Toyokuni, S., Oka, S., Ohnishi, Y. N., Tsuchimoto, D., & Nakabeppu, Y. (2009). ITPase-deficient mice show growth retardation and die before weaning. Cell Death and Differentiation, 16, 1315-1322. https://doi.org/10.1038/cdd.2009.53 - PubMed
  4. Bierau, J., Lindhout, M., & Bakker, J. A. (2007). Pharmacogenetic significance of inosine triphosphatase. Pharmacogenomics, 8, 1221-1228. https://doi.org/10.2217/14622416.8.9.1221 - PubMed
  5. Boison, D. (2017). New insights into the mechanisms of the ketogenic diet. Current Opinion in Neurology, 30, 187-192. https://doi.org/10.1097/WCO.0000000000000432 - PubMed
  6. Burgess, R., Wang, S., McTague, A., Boysen, K. E., Yang, X., Zeng, Q., Myers, K. A., Rochtus, A., Trivisano, M., Gill, D., Consortium, E. I. M. F. S., Sadleir, L. G., Specchio, N., Guerrini, R., Marini, C., Zhang, Y. H., Mefford, H. C., Kurian, M. A., Poduri, A. H., & Scheffer, I. E. (2019). The genetic landscape of epilepsy of infancy with migrating focal seizures. Annals of Neurology, 86, 821-831. https://doi.org/10.1002/ana.25619 - PubMed
  7. Burgis, N. E. (2016). A disease spectrum for ITPA variation: Advances in biochemical and clinical research. Journal of Biomedical Science, 23, 73. https://doi.org/10.1186/s12929-016-0291-y - PubMed
  8. Burton, K., White, H., & Sleep, J. (2005). Kinetics of muscle contraction and actomyosin NTP hydrolysis from rabbit using a series of metal-nucleotide substrates. Journal of Physiology, 563, 689-711. https://doi.org/10.1113/jphysiol.2004.078907 - PubMed
  9. Chaudhury, S., Lyskov, S., & Gray, J. J. (2010). PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics, 26, 689-691. https://doi.org/10.1093/bioinformatics/btq007 - PubMed
  10. Christensen, J. H., Siggaard, C., Corydon, T. J., deSanctis, L., Kovacs, L., Robertson, G. L., Gregersen, N., & Rittig, S. (2004). Six novel mutations in the arginine vasopressin gene in 15 kindreds with autosomal dominant familial neurohypophyseal diabetes insipidus give further insight into the pathogenesis. European Journal of Human Genetics, 12, 44-51. https://doi.org/10.1038/sj.ejhg.5201086 - PubMed
  11. Combined Annotation Dependent Depletion (CADD). http://cadd.gs.washington.edu - PubMed
  12. DECIPHER. https://decipher.sanger.ac.uk - PubMed
  13. Ensembl. https://www.ensembl.org/index.html - PubMed
  14. Galperin, M. Y., Moroz, O. V., Wilson, K. S., & Murzin, A. G. (2006). House cleaning, a part of good housekeeping. Molecular Microbiology, 59, 5-19. https://doi.org/10.1111/j.1365-2958.2005.04950.x - PubMed
  15. Gavrilovici, C., & Rho, J. M. (2021). Metabolic epilepsies amenable to ketogenic therapies: Indications, contraindications, and underlying mechanisms. Journal of Inherited Metabolic Disease, 44, 42-53. https://doi.org/10.1002/jimd.12283 - PubMed
  16. Gene Cards. http://www.genecards.org - PubMed
  17. Gene Matcher. http://www.genematcher.org - PubMed
  18. Genome Aggregation Database (GnomAD). http://gnomad.broadinstitute.org - PubMed
  19. Greater Middle East (GME) Variome Project. http://igm.ucsd.edu/gme/ - PubMed
  20. Handley, M. T., Reddy, K., Wills, J., Rosser, E., Kamath, A., Halachev, M., Falkous, G., Williams, D., Cox, P., Meynert, A., Raymond, E. S., Morrison, H., Brown, S., Allan, E., Aligianis, I., Jackson, A. P., Ramsahoye, B. H., von Kriegsheim, A., Taylor, R. W., … FitzPatrick, D. R. (2019). ITPase deficiency causes a Martsolf-like syndrome with a lethal infantile dilated cardiomyopathy. PLOS Genetics, 15, e1007605. https://doi.org/10.1371/journal.pgen.1007605 - PubMed
  21. Holmes, S. L., Turner, B. M., & Hirschhorn, K. (1979). Human inosine triphosphatase: Catalytic properties and population studies. Clinica Chimica Acta, 97, 143-153. https://doi.org/10.1016/0009-8981(79)90410-8 - PubMed
  22. Human Genome Variation Society. https://varnomen.hgvs.org - PubMed
  23. Human Splice Finder. http://www.umd.be/HSF - PubMed
  24. Iranome. http://www.iranome.ir - PubMed
  25. Jagadish, S., Payne, E. T., Wong-Kisiel, L., Nickels, K. C., Eckert, S., & Wirrell, E. C. (2019). The ketogenic and modified atkins diet therapy for children with refractory epilepsy of genetic etiology. Pediatric Neurology, 94, 32-37. https://doi.org/10.1016/j.pediatrneurol.2018.12.012 - PubMed
  26. Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581, 434-443. https://doi.org/10.1038/s41586-020-2308-7 - PubMed
  27. Kaur, P., Neethukrishna, K., Kumble, A., Girisha, K. M., & Shukla, A. (2019). Identification of a novel homozygous variant confirms ITPA as a developmental and epileptic encephalopathy gene. American Journal of Medical Genetics. Part A, 179, 857-861. https://doi.org/10.1002/ajmg.a.61103 - PubMed
  28. Kevelam, S. H., Bierau, J., Salvarinova, R., Agrawal, S., Honzik, T., Visser, D., Weiss, M. M., Salomons, G. S., Abbink, T. E., Waisfisz, Q., & van der Knaap, M. S. (2015). Recessive ITPA mutations cause an early infantile encephalopathy. Annals of Neurology, 78, 649-658. https://doi.org/10.1002/ana.24496 - PubMed
  29. van der Knaap, M. S., Breiter, S. N., Naidu, S., Hart, A. A., & Valk, J. (1999). Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology, 213, 121-133. https://doi.org/10.1148/radiology.213.1.r99se01121 - PubMed
  30. Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., O'Donnell-Luria, A. H., Ware, J. S., Hill, A. J., Cummings, B. B., Tukiainen, T., Birnbaum, D. P., Kosmicki, J. A., Duncan, L. E., Estrada, K., Zhao, F., Zou, J., Pierce-Hoffman, E., Berghout, J., … Exome Aggregation Consortium. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536, 285-291. https://doi.org/10.1038/nature19057 - PubMed
  31. Lin Lin Lee, V., Kar Meng Choo, B., Chung, Y. S., Kundap, P., Kumari, U., Shaikh, Y., & M. F. (2018). Treatment, therapy and management of metabolic epilepsy: A systematic review. International Journal of Molecular Sciences, 19, 871. https://doi.org/10.3390/ijms19030871 - PubMed
  32. Martin, K., Jackson, C. F., Levy, R. G., & Cooper, P. N. (2016). Ketogenic diet and other dietary treatments for epilepsy. Cochrane Database of Systematic Reviews, 2, CD001903. https://doi.org/10.1002/14651858.CD001903.pub3 - PubMed
  33. Masino, S. A., Kawamura, M., Jr., Ruskin, D. N., Gawryluk, J., Chen, X., & Geiger, J. D. (2010). Purines and the anti-epileptic actions of ketogenic diets. The Open Neuroscience Journal, 4, 58-63. https://doi.org/10.2174/1874082001004010058 - PubMed
  34. McTague, A., Howell, K. B., Cross, J. H., Kurian, M. A., & Scheffer, I. E. (2016). The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurology, 15, 304-316. https://doi.org/10.1016/S1474-4422(15)00250-1 - PubMed
  35. Mutation Taster: http://www.mutationtaster.org - PubMed
  36. Muthusamy, K., Boyer, S., Patterson, M., Bierau, J., Wortmann, S., & Morava, E. (2021). Neuroimaging findings in inosine triphosphate pyrophosphohydrolase (ITPase) deficiency. Neurology, 97(1), e109-e110. https://doi.org/10.1212/WNL.0000000000011719 - PubMed
  37. Nakauchi, A., Wong, J. H., Mahasirimongkol, S., Yanai, H., Yuliwulandari, R., Mabuchi, A., Liu, X., Mushiroda, T., Wattanapokayakit, S., Miyagawa, T., Keicho, N., & Tokunaga, K. (2016). Identification of ITPA on chromosome 20 as a susceptibility gene for young-onset tuberculosis. Human Genome Variation, 3, 15067. https://doi.org/10.1038/hgv.2015.67 - PubMed
  38. Online Mendelian Inheritance in Man. http://www.ncbi.nlm.nih.gov/Omim - PubMed
  39. Proteomics DB. https://www.proteomicsdb.org - PubMed
  40. PubMed. http://www.ncbi.nlm.nih.gov/pubmed - PubMed
  41. Rahman, S., Footitt, E. J., Varadkar, S., & Clayton, P. T. (2013). Inborn errors of metabolism causing epilepsy. Developmental Medicine and Child Neurology, 55, 23-36. https://doi.org/10.1111/j.1469-8749.2012.04406.x - PubMed
  42. RefSeq. https://www.ncbi.nlm.nih.gov/refseq - PubMed
  43. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W. W., Hegde, M., Lyon, E., Spector, E., Voelkerding, K., Rehm, H. L., & ACMG Laboratory Quality Assurance Committee. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17, 405-424. https://doi.org/10.1038/gim.2015.30 - PubMed
  44. Rochtus, A., Olson, H. E., Smith, L., Keith, L. G., El Achkar, C., Taylor, A., Mahida, S., Park, M., Kelly, M., Shain, C., Rockowitz, S., Rosen Sheidley, B., & Poduri, A. (2020). Genetic diagnoses in epilepsy: The impact of dynamic exome analysis in a pediatric cohort. Epilepsia, 61, 249-258. https://doi.org/10.1111/epi.16427 - PubMed
  45. Sakamoto, M., Kouhei, D., Haniffa, M., Silva, S., Troncoso, M., Santander, P., Schonstedt, V., Stecher, X., Okamoto, N., Hamanaka, K., Mizuguchi, T., Mitsuhashi, S., Miyake, N., & Matsumoto, N. (2020). A novel ITPA variant causes epileptic encephalopathy with multiple-organ dysfunction. Journal of Human Genetics, 65, 751-757. https://doi.org/10.1038/s10038-020-0765-3 - PubMed
  46. Sharma, S., & Prasad, A. N. (2017). Inborn errors of metabolism and epilepsy: Current understanding, diagnosis, and treatment approaches. International Journal of Molecular Sciences, 18, 1384. https://doi.org/10.3390/ijms18071384 - PubMed
  47. Shaw-Smith, C., Redon, R., Rickman, L., Rio, M., Willatt, L., Fiegler, H., Firth, H., Sanlaville, D., Winter, R., Colleaux, L., Bobrow, M., & Carter, N. P. (2004). Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. Journal of Medical Genetics, 41, 241-248. https://doi.org/10.1136/jmg.2003.017731 - PubMed
  48. Shipkova, M., Franz, J., Abe, M., Klett, C., Wieland, E., & Andus, T. (2011). Association between adverse effects under azathioprine therapy and inosine triphosphate pyrophosphatase activity in patients with chronic inflammatory bowel disease. Therapeutic Drug Monitoring, 33, 321-328. https://doi.org/10.1097/FTD.0b013e31821a7c34 - PubMed
  49. SIFT. https://sift.bii.a-star.edu.sg - PubMed
  50. Simone, P. D., Pavlov, Y. I., & Borgstahl, G. E. (2013). ITPA (inosine triphosphate pyrophosphatase): From surveillance of nucleotide pools to human disease and pharmacogenetics. Mutation Research/DNA Repair, 753, 131-146. https://doi.org/10.1016/j.mrrev.2013.08.001 - PubMed
  51. Sobreira, N., Schiettecatte, F., Valle, D., & Hamosh, A. (2015). GeneMatcher: A matching tool for connecting investigators with an interest in the same gene. Human Mutation, 36, 928-930. https://doi.org/10.1002/humu.22844 - PubMed
  52. The 1000 Genomes Browser. http://browser.1000genomes.org/index.html - PubMed
  53. UCSC Human Genome Database. http://www.genome.ucsc.edu - PubMed
  54. UniProt. https://www.uniprot.org - PubMed
  55. Varsome. https://varsome.com - PubMed
  56. Vithana, E. N., Morgan, P. E., Ramprasad, V., Tan, D. T., Yong, V. H., Venkataraman, D., Venkatraman, A., Yam, G. H., Nagasamy, S., Law, R. W., Rajagopal, R., Pang, C. P., Kumaramanickevel, G., Casey, J. R., & Aung, T. (2008). SLC4A11 mutations in Fuchs endothelial corneal dystrophy. Human Molecular Genetics, 17, 656-666. https://doi.org/10.1093/hmg/ddm337 - PubMed
  57. Wells, J., Swaminathan, A., Paseka, J., & Hanson, C. (2020). Efficacy and safety of a ketogenic diet in children and adolescents with refractory epilepsy-A review. Nutrients, 12, 1809. https://doi.org/10.3390/nu12061809 - PubMed

Publication Types

Grant support