Display options
Share it on

Circulation. 2021 Feb 23;143(8):783-789. doi: 10.1161/CIRCULATIONAHA.120.048338. Epub 2020 Nov 18.

Central Command and the Regulation of Exercise Heart Rate Response in Heart Failure With Preserved Ejection Fraction.

Circulation

Satyam Sarma, Erin Howden, Justin Lawley, Mitchel Samels, Benjamin D Levine

Affiliations

  1. Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas (S.S., M.S., B.D.L.).
  2. Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas (S.S., B.D.L.).
  3. Baker Heart and Diabetes Institute, Melbourne, Australia (E.H.).
  4. Department of Sport Science, University of Innsbruck, Austria (J.L.).

PMID: 33205661 PMCID: PMC7902416 DOI: 10.1161/CIRCULATIONAHA.120.048338

Abstract

BACKGROUND: Chronotropic incompetence is common in heart failure with preserved ejection fraction (HFpEF) and is linked to impaired aerobic capacity. Whether upstream autonomic signaling pathways responsible for raising exercise heart rate are impaired in HFpEF is unknown. We investigated the integrity of central command and muscle metaboreceptor function, 2 predominant mechanisms responsible for exertional increases in heart rate, in patients with HFpEF and senior controls.

METHODS: Fourteen healthy senior controls (7 men, 7 women) and 20 carefully screened patients with HFpEF (8 men, 12 women) underwent cardiopulmonary exercise testing (peak Vo

RESULTS: Peak Vo

CONCLUSIONS: Central command (vagally mediated) and metaboreceptor function (sympathetically mediated) in patients with HFpEF were not different from those in healthy senior controls despite significantly lower peak whole-body exercise heart rates. These results demonstrate key reflex autonomic pathways regulating exercise heart rate responsiveness are intact in HFpEF.

Keywords: exercise; heart failure; heart rate

References

  1. J Appl Physiol (1985). 2002 Mar;92(3):1317-24 - PubMed
  2. Am J Physiol. 1998 Jan;274(1 Pt 2):H233-41 - PubMed
  3. Med Sci Sports Exerc. 2003 Feb;35(2):221-8; discussion 229 - PubMed
  4. Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H1286-92 - PubMed
  5. Am J Physiol Heart Circ Physiol. 2006 Dec;291(6):H2735-42 - PubMed
  6. J Am Heart Assoc. 2020 Sep;9(17):e015794 - PubMed
  7. Exp Physiol. 2014 Apr;99(4):609-15 - PubMed
  8. Circulation. 1991 Nov;84(5):2034-9 - PubMed
  9. Circ Res. 1985 Sep;57(3):461-9 - PubMed
  10. Med Biol Eng Comput. 2011 Aug;49(8):909-16 - PubMed
  11. Circ Heart Fail. 2020 Mar;13(3):e006331 - PubMed
  12. Clin Sci (Lond). 2001 Jun;100(6):643-51 - PubMed
  13. Clin Sci (Lond). 2002 Jan;102(1):23-30 - PubMed
  14. Circulation. 2004 Sep 28;110(13):1799-805 - PubMed
  15. Circulation. 2000 Feb 22;101(7):784-9 - PubMed
  16. Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1191-204 - PubMed
  17. J Appl Physiol (1985). 1988 May;64(5):2190-6 - PubMed
  18. Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H969-76 - PubMed
  19. J Physiol. 2014 Jun 15;592(12):2491-500 - PubMed
  20. J Physiol. 2002 Oct 15;544(2):653-64 - PubMed
  21. Am J Cardiol. 2004 Jun 15;93(12):1473-80 - PubMed
  22. Circulation. 2018 Jan 9;137(2):148-161 - PubMed
  23. Am J Physiol Regul Integr Comp Physiol. 2011 Jul;301(1):R193-200 - PubMed
  24. Exp Physiol. 2018 Jun;103(6):807-818 - PubMed
  25. J Physiol. 1990 Nov;430:105-17 - PubMed
  26. Am J Cardiol. 1991 Sep 15;68(8):766-72 - PubMed
  27. Circ Res. 1995 Jan;76(1):127-31 - PubMed
  28. Am J Physiol Regul Integr Comp Physiol. 2016 Dec 1;311(6):R1013-R1021 - PubMed
  29. Exp Physiol. 2012 Jan;97(1):14-9 - PubMed
  30. J Appl Physiol (1985). 2007 Jan;102(1):494-6; discussion 496-7 - PubMed

MeSH terms

Publication Types

Grant support