Display options
Share it on

Biomaterials. 2021 Jan;268:120586. doi: 10.1016/j.biomaterials.2020.120586. Epub 2020 Dec 01.

Polyphosphazenes enable durable, hemocompatible, highly efficient antibacterial coatings.

Biomaterials

Victoria Albright, Daniel Penarete-Acosta, Mary Stack, Jeremy Zheng, Alexander Marin, Hanna Hlushko, Hongjun Wang, Arul Jayaraman, Alexander K Andrianov, Svetlana A Sukhishvili

Affiliations

  1. Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA.
  2. Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
  3. Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA.
  4. Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA.
  5. Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA.
  6. Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
  7. Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA. Electronic address: [email protected].

PMID: 33310537 PMCID: PMC7855754 DOI: 10.1016/j.biomaterials.2020.120586

Abstract

Biocompatible antibacterial coatings are highly desirable to prevent bacterial colonization on a wide range of medical devices from hip implants to skin grafts. Traditional polyelectrolytes are unable to directly form coatings with cationic antibiotics at neutral pH and suffer from high degrees of antibiotic release upon exposure to physiological concentrations of salt. Here, novel inorganic-organic hybrid polymer coatings based on direct layer-by-layer assembly of anionic polyphosphazenes (PPzs) of various degrees of fluorination with cationic antibiotics (polymyxin B, colistin, gentamicin, and neomycin) are reported. The coatings displayed low levels of antibiotic release upon exposure to salt and pH-triggered response of controlled doses of antibiotics. Importantly, coatings remained highly surface active against Escherichia coli and Staphylococcus aureus, even after 30 days of pre-exposure to physiological conditions (bacteria-free) or after repeated bacterial challenge. Moreover, coatings displayed low (<1%) hemolytic activity for both rabbit and porcine blood. Coatings deposited on either hard (Si wafers) or soft (electrospun fiber matrices) materials were non-toxic towards fibroblasts (NIH/3T3) and displayed controllable fibroblast adhesion via PPz fluorination degree. Finally, coatings showed excellent antibacterial activity in ex vivo pig skin studies. Taken together, these results suggest a new avenue to form highly tunable, biocompatible polymer coatings for medical device surfaces.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Keywords: Antibacterial; Fluoropolymers; Hemocompatible; Layer-by-layer; Polyphosphazenes; Self-defensive

References

  1. Mol Immunol. 2015 Jul;66(1):14-21 - PubMed
  2. PLoS One. 2016 Nov 8;11(11):e0166176 - PubMed
  3. PLoS Pathog. 2016 Jun 02;12(6):e1005598 - PubMed
  4. Wound Repair Regen. 2019 Jul;27(4):421-425 - PubMed
  5. J Acquir Immune Defic Syndr. 2007 Sep 1;46(1):48-55 - PubMed
  6. Cardiovasc Revasc Med. 2016 Apr-May;17(3):209-11 - PubMed
  7. Acta Biomater. 2017 Oct 1;61:66-74 - PubMed
  8. Biomaterials. 2010 Aug;31(23):6019-30 - PubMed
  9. J Med Chem. 2009 Apr 23;52(8):2243-54 - PubMed
  10. Biomacromolecules. 2016 Nov 14;17(11):3732-3742 - PubMed
  11. Expert Rev Med Devices. 2009 Sep;6(5):553-67 - PubMed
  12. Biomaterials. 2015 Mar;45:64-71 - PubMed
  13. Langmuir. 2019 Feb 5;35(5):1156-1171 - PubMed
  14. ACS Appl Mater Interfaces. 2018 Mar 21;10(11):9756-9764 - PubMed
  15. Heliyon. 2016 Apr 22;2(4):e00102 - PubMed
  16. Biomaterials. 2019 Jun;204:25-35 - PubMed
  17. Clin Microbiol Rev. 2008 Jul;21(3):449-65 - PubMed
  18. Biomacromolecules. 2008 Jun;9(6):1660-8 - PubMed
  19. Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:241-247 - PubMed
  20. Antimicrob Agents Chemother. 1991 Feb;35(2):237-41 - PubMed
  21. J Bacteriol. 1980 Oct;144(1):114-23 - PubMed
  22. ILAR J. 2015;56(1):127-38 - PubMed
  23. Biomacromolecules. 2010 Aug 9;11(8):2033-8 - PubMed
  24. Arch Dermatol Res. 2010 Jul;302(5):357-65 - PubMed
  25. Adv Drug Deliv Rev. 2004 Apr 23;56(7):999-1021 - PubMed
  26. J Biomed Mater Res A. 2016 Jun;104(6):1479-88 - PubMed
  27. Biomaterials. 1998 Jan-Feb;19(1-3):109-15 - PubMed
  28. ACS Nano. 2014 Aug 26;8(8):7733-45 - PubMed
  29. Angew Chem Int Ed Engl. 2014 Jan 7;53(2):439-41 - PubMed
  30. Acta Biomater. 2018 Oct 15;80:154-168 - PubMed
  31. Biomacromolecules. 2005 May-Jun;6(3):1375-9 - PubMed
  32. Biomaterials. 1992;13(12):857-62 - PubMed
  33. Bioconjug Chem. 1999 May-Jun;10(3):401-5 - PubMed
  34. Bioconjug Chem. 2003 Jan-Feb;14(1):51-7 - PubMed
  35. Cold Spring Harb Perspect Med. 2016 Jun 01;6(6): - PubMed
  36. J Pharm Pharmacol. 1991 Aug;43(8):559-63 - PubMed
  37. Biomacromolecules. 2004 Sep-Oct;5(5):1999-2006 - PubMed
  38. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10): - PubMed
  39. Clin Microbiol Rev. 2017 Apr;30(2):557-596 - PubMed
  40. J Mater Chem B. 2018 Jun 21;6(23):3904-3913 - PubMed
  41. Indian J Med Res. 2019 Feb;149(2):97-106 - PubMed
  42. Biomaterials. 2014 Feb;35(5):1496-506 - PubMed
  43. JACC Cardiovasc Interv. 2017 Jan 23;10(2):160-167 - PubMed
  44. Biomaterials. 2011 Jan;32(2):339-51 - PubMed
  45. P T. 2015 Apr;40(4):277-83 - PubMed
  46. Adv Healthc Mater. 2018 Jun;7(11):e1800132 - PubMed
  47. ACS Appl Mater Interfaces. 2015 Sep 16;7(36):20304-13 - PubMed
  48. PLoS One. 2017 Nov 15;12(11):e0186946 - PubMed
  49. Sci Transl Med. 2012 Sep 26;4(153):153rv10 - PubMed

Substances

MeSH terms

Publication Types

Grant support