Display options
Share it on

Sci Data. 2021 Dec 03;8(1):311. doi: 10.1038/s41597-021-01095-3.

ProMetIS, deep phenotyping of mouse models by combined proteomics and metabolomics analysis.

Scientific data

Alyssa Imbert, Magali Rompais, Mohammed Selloum, Florence Castelli, Emmanuelle Mouton-Barbosa, Marion Brandolini-Bunlon, Emeline Chu-Van, Charlotte Joly, Aurélie Hirschler, Pierrick Roger, Thomas Burger, Sophie Leblanc, Tania Sorg, Sadia Ouzia, Yves Vandenbrouck, Claudine Médigue, Christophe Junot, Myriam Ferro, Estelle Pujos-Guillot, Anne Gonzalez de Peredo, François Fenaille, Christine Carapito, Yann Herault, Etienne A Thévenot

Affiliations

  1. CEA, LIST, Laboratoire Sciences des Données et de la Décision, IFB, MetaboHUB, Gif-sur-Yvette, France. [email protected].
  2. IFB-core, UMS3601, Genoscope, Evry, France. [email protected].
  3. Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, ProFI, Strasbourg, France.
  4. Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, Phenomin-ICS, Illkirch, France.
  5. Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France.
  6. Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, ProFI, Toulouse, France.
  7. Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB, Clermont-Ferrand, France.
  8. CEA, LIST, Laboratoire Intelligence Artificielle et Apprentissage Automatique, MetaboHUB, Gif-sur-Yvette, France.
  9. Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, FR2048, ProFI, Grenoble, France.
  10. IFB-core, UMS3601, Genoscope, Evry, France.
  11. Laboratoire d'Analyses Bioinformatique en Génomique et Métabolisme (LABGeM), CNRS & CEA/DRF/IFJ, UMR8030, Evry, France.
  12. Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France.
  13. Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France. [email protected].

PMID: 34862403 DOI: 10.1038/s41597-021-01095-3

Abstract

Genes are pleiotropic and getting a better knowledge of their function requires a comprehensive characterization of their mutants. Here, we generated multi-level data combining phenomic, proteomic and metabolomic acquisitions from plasma and liver tissues of two C57BL/6 N mouse models lacking the Lat (linker for activation of T cells) and the Mx2 (MX dynamin-like GTPase 2) genes, respectively. Our dataset consists of 9 assays (1 preclinical, 2 proteomics and 6 metabolomics) generated with a fully non-targeted and standardized approach. The data and processing code are publicly available in the ProMetIS R package to ensure accessibility, interoperability, and reusability. The dataset thus provides unique molecular information about the physiological role of the Lat and Mx2 genes. Furthermore, the protocols described herein can be easily extended to a larger number of individuals and tissues. Finally, this resource will be of great interest to develop new bioinformatic and biostatistic methods for multi-omics data integration.

© 2021. The Author(s).

References

  1. EUMODIC Consortium. et al. Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat. Genet. 47, 969–978 (2015). - PubMed
  2. The International Mouse Phenotyping Consortium. et al. High-throughput discovery of novel developmental phenotypes. Nature 537, 508–514 (2016). - PubMed
  3. Meehan, T. F. et al. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat. Genet. 49, 1231 (2017). - PubMed
  4. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016). - PubMed
  5. Patti, G. J., Yanes, O. & Siuzdak, G. Innovation: Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13, 263–269 (2012). - PubMed
  6. Rolin, D. Metabolomics coming of age with its technological diversity. Adv. Bot. Res. 67, 2–693 (2013). - PubMed
  7. Piazza, I. et al. A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication. Cell 172, 358–372.e23 (2018). - PubMed
  8. Parker, B. L. et al. An integrative systems genetic analysis of mammalian lipid metabolism. Nature 567, 187–193 (2019). - PubMed
  9. Shen, B. et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell 182, 59–72.e15 (2020). - PubMed
  10. Ghaemi, M. S. et al. Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics 35, 95–103 (2018). - PubMed
  11. Webb-Robertson, B. J. M. et al. A bayesian integration model of high-throughput proteomics and metabolomics data for improved early detection of microbial infections. Pac. Symp. Biocomput. 19, 451–463 (2009). - PubMed
  12. Fischer, R., Bowness, P. & Kessler, B. M. Two birds with one stone: Doing metabolomics with your proteomics kit. Proteomics 13, 3371–3386 (2013). - PubMed
  13. Martens, L. et al. mzML - a Community Standard for Mass Spectrometry Data. Mol. Cell. Proteomics 10 (2011). - PubMed
  14. Griss, J. et al. The mzTab Data Exchange Format: Communicating Mass-spectrometry-based Proteomics and Metabolomics Experimental Results to a Wider Audience. Mol. Cell. Proteomics 13, 2765–2775 (2014). - PubMed
  15. Chambers, M. C. et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 30, 918–920 (2012). - PubMed
  16. Kenar, E. et al. Automated Label-free Quantification of Metabolites from Liquid Chromatography–Mass Spectrometry Data. Mol. Cell. Proteomics 13, 348–359 (2014). - PubMed
  17. Gatto, L., Gibb, S. & Rainer, J. MSnbase, Efficient and Elegant R-Based Processing and Visualization of Raw Mass Spectrometry Data. J. Proteome Res. 20, 1063–1069 (2021). - PubMed
  18. Perez‐Riverol, Y. & Moreno, P. Scalable Data Analysis in Proteomics and Metabolomics Using BioContainers and Workflows Engines. PROTEOMICS 20, 1900147 (2020). - PubMed
  19. Coman, C. et al. Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology. Mol. Cell. Proteomics 15, 1435–1466 (2016). - PubMed
  20. Blum, B. C., Mousavi, F. & Emili, A. Single-platform ‘multi-omic’ profiling: unified mass spectrometry and computational workflows for integrative proteomics–metabolomics analysis. Mol. Omics 14, 307–319 (2018). - PubMed
  21. Zougman, A., Wilson, J. P., Roberts, L. D. & Banks, R. E. Detergent-Free Simultaneous Sample Preparation Method for Proteomics and Metabolomics. J. Proteome Res. 19, 2838–2844 (2020). - PubMed
  22. Brown, S. D. M. et al. High-throughput mouse phenomics for characterizing mammalian gene function. Nat. Rev. Genet. 19, 357–370 (2018). - PubMed
  23. Roncagalli, R., Mingueneau, M., Grégoire, C., Malissen, M. & Malissen, B. LAT signaling pathology: an “autoimmune” condition without T cell self-reactivity. Trends Immunol. 31, 253–259 (2010). - PubMed
  24. Loviglio, M. N. et al. The immune signaling adaptor LAT contributes to the neuroanatomical phenotype of 16p11.2 BP2-BP3 CNVs. Am. J. Hum. Genet. 101, 564–577 (2017). - PubMed
  25. Muñiz Moreno, M. et al. Modeling Down syndrome in animals from the early stage to the 4.0 models and next. in Progress in Brain Research vol. 251, 91–143 (Elsevier, 2020). - PubMed
  26. Barupal, D. K. et al. A Comprehensive Plasma Metabolomics Dataset for a Cohort of Mouse Knockouts within the International Mouse Phenotyping Consortium. Metabolites 9, 101 (2019). - PubMed
  27. Imbert, A. & Thévenot, E. The ProMetIS R package: Multi-omics phenotyping of the LAT and MX2 knockout mice. Zenodo https://doi.org/10.5281/zenodo.5615546 (2021). - PubMed
  28. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). - PubMed
  29. Brown, S. D. M. & Moore, M. W. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm. Genome 23, 632–640 (2012). - PubMed
  30. Simon, M. M. et al. A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 14, R82 (2013). - PubMed
  31. Bouyssié, D. et al. Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics 36, 3148–3155 (2020). - PubMed
  32. Wieczorek, S. et al. DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics. Bioinformatics 33, 135–136 (2017). - PubMed
  33. Lazar, C., Gatto, L., Ferro, M., Bruley, C. & Burger, T. Accounting for the Multiple Natures of Missing Values in Label-Free Quantitative Proteomics Data Sets to Compare Imputation Strategies. J. Proteome Res. 15, 1116–1125 (2016). - PubMed
  34. Gianetto, Q. G., Wieczorek, S., Couté, Y. & Burger, T. A peptide-level multiple imputation strategy accounting for the different natures of missing values in proteomics data. Preprint at https://doi.org/10.1101/2020.05.29.122770 (2020). - PubMed
  35. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019). - PubMed
  36. Rompais, M., Cianferani, S. & Carapito, C. ProMetIS: deep phenotyping of mouse models by proteomics and metabolomics. PRIDE https://identifiers.org/pride.project:PXD028416 (2020). - PubMed
  37. Mouton-Barbosa, E., Schiltz, O. & Gonzalez de Peredo, A. ProMetIS: deep phenotyping of mouse models by proteomics and metabolomics. PRIDE https://identifiers.org/pride.project:PXD028550 (2020). - PubMed
  38. Boudah, S. et al. Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry. J. Chromatogr. B 966, 34–47 (2014). - PubMed
  39. Pereira, H., Martin, J.-F., Joly, C., Sébédio, J.-L. & Pujos-Guillot, E. Development and validation of a UPLC/MS method for a nutritional metabolomic study of human plasma. Metabolomics 6, 207–218 (2010). - PubMed
  40. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008). - PubMed
  41. Teleman, J. et al. Numerical Compression Schemes for Proteomics Mass Spectrometry Data. Mol. Cell. Proteomics 13, 1537–1542 (2014). - PubMed
  42. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006). - PubMed
  43. Giacomoni, F. et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31, 1493–1495 (2015). - PubMed
  44. Tautenhahn, R., Bottcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504 (2008). - PubMed
  45. Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R. & Neumann, S. CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal. Chem. 84, 283–289 (2012). - PubMed
  46. Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979). - PubMed
  47. Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011). - PubMed
  48. Thévenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 14, 3322–3335 (2015). - PubMed
  49. Wehrens, R. et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics 12, 1–12 (2016). - PubMed
  50. Monnerie et al. Analytic Correlation Filtration: a new tool to reduce analytical complexity of metabolomic datasets. Metabolites 9, 250 (2019). - PubMed
  51. Roux, A. et al. Annotation of the Human Adult Urinary Metabolome and Metabolite Identification Using Ultra High Performance Liquid Chromatography Coupled to a Linear Quadrupole Ion Trap-Orbitrap Mass Spectrometer. Anal. Chem. 84, 6429–6437 (2012). - PubMed
  52. Sumner, L. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007). - PubMed
  53. Lat: linker for activation of T cells. Mouse Genome Informatics Database https://identifiers.org/MGI:1342293 (2018). - PubMed
  54. Mx2: MX dynamin-like GTPase 2. Mouse Genome Informatics Database https://identifiers.org/MGI:97244 (2018). - PubMed
  55. Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014). - PubMed
  56. Haug, K. et al. MetaboLights: an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41, D781–D786 (2013). - PubMed
  57. Thévenot, E. A., Castelli, F., Pujos-Guillot, E. & Fenaille, F. MTBLS1903: ProMetIS: deep phenotyping of knock-out mice by proteomics and metabolomics. MetaboLights https://identifiers.org/metabolights:MTBLS1903 (2021). - PubMed
  58. Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015). - PubMed
  59. Hernandez-Ferrer, C., Ruiz-Arenas, C., Beltran-Gomila, A. & Gonzalez, J. R. MultiDataSet: an R package for encapsulating multiple data sets with application to omic data integration. BMC Bioinformatics 18, 36 (2016). - PubMed
  60. Guitton, Y. et al. Create, run, share, publish, and reference your LC-MS, FIA-MS, GC-MS, and NMR data analysis workflows with the Workflow4Metabolomics 3.0 Galaxy online infrastructure for metabolomics. Int. J. Biochem. Cell Biol. 93, 89–101 (2017). - PubMed
  61. Broadhurst, D. et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14, 72 (2018). - PubMed
  62. Dudzik, D., Barbas-Bernardos, C., Garcia, A. & Barbas, C. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. Rev. Issue 2017 147, 149–173 (2018). - PubMed
  63. Zhang, X., Dong, J. & Raftery, D. Five Easy Metrics of Data Quality for LC–MS-Based Global Metabolomics. Anal. Chem. 92, 12925–12933 (2020). - PubMed
  64. Gamer, M., Lemon, J., Fellows, I. & Singh, P. irr: Various Coefficients of Interrater Reliability and Agreement. https://CRAN.R-project.org/package=irr (2019). - PubMed
  65. Rinaudo, P., Boudah, S., Junot, C. & Thévenot, E. A. biosigner: a new method for the discovery of significant molecular signatures from omics data. Front. Mol. Biosci. 3 (2016). - PubMed
  66. Rohart, F., Gautier, B., Singh, A. & Le Cao, K.-A. mixOmics: An R package for omics feature selection and multiple data integration. PLOS Comput. Biol. 13, e1005752 (2017). - PubMed
  67. Vandenbrouck, Y., Christiany, D., Combes, F., Loux, V. & Brun, V. Bioinformatics Tools and Workflow to Select Blood Biomarkers for Early Cancer Diagnosis: An Application to Pancreatic Cancer. PROTEOMICS 19, 1800489 (2019). - PubMed
  68. Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010). - PubMed
  69. Combes, F., Loux, V. & Vandenbrouck, Y. GO Enrichment Analysis for Differential Proteomics Using ProteoRE. in Proteomics Data Analysis (ed. Cecconi, D.) vol. 2361, 179–196 (Springer US, 2021). - PubMed

Substances

MeSH terms

Publication Types

Grant support