Display options
Share it on

Sci Data. 2021 Jul 28;8(1):194. doi: 10.1038/s41597-021-00957-0.

309 metagenome assembled microbial genomes from deep sediment samples in the Gulfs of Kathiawar Peninsula.

Scientific data

Neelam M Nathani, Kaushambee J Dave, Priyanka P Vatsa, Mayur S Mahajan, Parth Sharma, Chandrashekar Mootapally

Affiliations

  1. Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India.
  2. Department of Molecular Cell Biology and Immunology, University of Tübingen, Geschwister-Scholl-Platz, 72074, Tübingen, Germany.
  3. Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, 382355, Gujarat, India.
  4. Microbiology Division, Regional Centre, Lokhandwala Road, Four Bungalows, Andheri (West), CSIR - National Institute of Oceanography (CSIR-NIO), Mumbai, 400053, Maharashtra, India.
  5. Department of Marine Science, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India. [email protected].

PMID: 34321485 PMCID: PMC8319310 DOI: 10.1038/s41597-021-00957-0

Abstract

Prokaryoplankton genomes from the deep marine sediments are less explored compared to shallow shore sediments. The Gulfs of Kathiawar peninsula experience varied currents and inputs from different on-shore activities. Any perturbations would directly influence the microbiome and their normal homeostasis. Advancements in reconstructing genomes from metagenomes allows us to understand the role of individual unculturable microbes in ecological niches like the Gulf sediments. Here, we report 309 bacterial and archaeal genomes assembled from metagenomics data of deep sediments from sites in the Gulf of Khambhat and Gulf of Kutch as well as a sample from the Arabian Sea. Phylogenomics classified them into 5 archaeal and 18 bacterial phyla. The genomes will facilitate understanding of the physiology, adaptation and impact of on-shore anthropogenic activities on the deep sediment microbes.

© 2021. The Author(s).

References

  1. Sci Data. 2021 Jul 28;8(1):194 - PubMed
  2. ISME J. 2016 Jun;10(6):1383-99 - PubMed
  3. Science. 2015 Dec 11;350(6266):aac8455 - PubMed
  4. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 - PubMed
  5. Front Microbiol. 2018 Dec 18;9:3124 - PubMed
  6. Nat Methods. 2012 Mar 04;9(4):357-9 - PubMed
  7. Microbiologyopen. 2017 Aug;6(4): - PubMed
  8. Comput Struct Biotechnol J. 2016 Dec 05;15:48-55 - PubMed
  9. Genome Res. 2015 Jul;25(7):1043-55 - PubMed
  10. PLoS One. 2010 Mar 10;5(3):e9490 - PubMed
  11. Genome Biol Evol. 2010 Jul 12;2:379-92 - PubMed
  12. Nature. 2019 Apr;568(7753):505-510 - PubMed
  13. Nat Biotechnol. 2017 Aug 8;35(8):725-731 - PubMed
  14. Sci Data. 2018 Jan 16;5:170203 - PubMed
  15. Environ Microbiol. 2016 Jan;18(1):159-73 - PubMed
  16. Sci Data. 2016 Jul 05;3:160050 - PubMed
  17. Syst Appl Microbiol. 2014 May;37(3):170-6 - PubMed
  18. Sci Total Environ. 2019 Feb 25;653:446-454 - PubMed
  19. Bioinformatics. 2016 Feb 15;32(4):605-7 - PubMed
  20. Sci Rep. 2019 Nov 21;9(1):17281 - PubMed
  21. BMC Genomics. 2008 Feb 08;9:75 - PubMed
  22. BMC Genomics. 2017 Nov 28;18(1):915 - PubMed
  23. Nat Biotechnol. 2018 Jul 6;36(7):566-569 - PubMed
  24. Bioinformatics. 2019 Nov 15;: - PubMed
  25. ISME J. 2017 Nov;11(11):2407-2425 - PubMed

MeSH terms

Publication Types

Grant support