Display options
Share it on

Ann Biomed Eng. 1987;15(3):331-46. doi: 10.1007/BF02584288.

Left ventricular external constraint: relationship between pericardial, pleural and esophageal pressures during positive end-expiratory pressure and volume loading in dogs.

Annals of biomedical engineering

I Kingma, O A Smiseth, M A Frais, E R Smith, J V Tyberg

Affiliations

  1. Department of Medicine, University of Calgary, Alberta, Canada.

PMID: 3310760 DOI: 10.1007/BF02584288

Abstract

Left ventricular (LV) diastolic filling is limited by the constraining effects exerted by the pericardium (PE) and the lung/chest wall. The aim of the present study was to assess the validity of various estimates of external cardiac constraint, compared to pericardial surface pressure (Ppe) measured lateral to the LV myocardium. In nine anesthetized dogs we measured Ppe, pleural surface pressure (Ppt) (lateral to the pericardium) and esophageal pressure (Pes) under conditions of volume loading and positive end-expiratory pressure (PEEP). We measured Ppe and Ppl with flat, liquid-containing silastic rubber balloons and Pes with an air-containing cylindrical balloon. After instrumentation, the chest was resealed and continuous suction (-5 mm Hg, 1 mm Hg = 0.133 kPa) was maintained. Volume loading with incremental intravenous infusions of saline was used to increase LV end-diastolic pressure to 20-25 mm Hg. PEEP of 0, 10 and 20 mm Hg were applied at baseline and after each increment of volume loading. At low volume, increases in PEEP caused simultaneous increases in LV end-diastolic pressure (P less than 0.01) and in Ppe (P less than 0.0001) but a reduction in transmural LV pressure (P less than 0.0005). Ppl and Pes both increased with PEEP (P less than 0.001 and P less than 0.01, respectively). However, Ppe always exceeded Ppl, while Pes remained at only approximately 1/3 Ppl throughout. Volume loading caused a significant increase in Ppe (P less than 0.0001) and a smaller, but significant increase in Ppl (P less than 0.05). Pes remained unchanged during volume loading. Thus external cardiac constraint increased markedly during volume loading and PEEP as evidenced by a marked elevation of Ppe. Both Ppl and Pes markedly underestimated this increase. Therefore, calculation of transmural LV pressure by subtracting pleural or esophageal pressure from intracavitary pressure can lead to overestimation of LV preload. The decrease in cardiac output during PEEP occurs secondary to decreased preload, i.e. decreased transmural pressure and end-diastolic dimension. Analysis of performance using cardiac function curves does not suggest a change in contractility with PEEP.

Cited by

References

  1. Circulation. 1983 Dec;68(6):1304-14 - PubMed
  2. Can J Physiol Pharmacol. 1981 Jan;59(1):45-52 - PubMed
  3. Circulation. 1979 Jul;60(1):4-12 - PubMed
  4. Am Rev Respir Dis. 1980 Apr;121(4):677-83 - PubMed
  5. Fed Proc. 1981 Jun;40(8):2178-81 - PubMed
  6. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):254-9 - PubMed
  7. Crit Care Med. 1985 Aug;13(8):617-24 - PubMed
  8. Am Rev Respir Dis. 1981 Oct;124(4):382-6 - PubMed
  9. J Trauma. 1975 Nov;15(11):951-9 - PubMed
  10. J Am Coll Cardiol. 1986 Feb;7(2):307-14 - PubMed
  11. Am J Physiol. 1984 Jan;246(1 Pt 2):H114-9 - PubMed
  12. J Appl Physiol Respir Environ Exerc Physiol. 1981 Sep;51(3):541-6 - PubMed
  13. Circulation. 1986 Mar;73(3):428-32 - PubMed
  14. J Appl Physiol Respir Environ Exerc Physiol. 1982 Aug;53(2):384-91 - PubMed
  15. Clin Exp Pharmacol Physiol. 1980 Mar-Apr;7(2):183-93 - PubMed
  16. Ann Thorac Surg. 1982 Jun;33(6):585-92 - PubMed
  17. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1367-74 - PubMed
  18. Circulation. 1982 Jul;66(1):108-20 - PubMed
  19. Am J Physiol. 1979 Apr;236(4):H534-44 - PubMed
  20. Surgery. 1982 Jul;92(1):52-60 - PubMed
  21. Am J Physiol. 1982 Apr;242(4):H549-56 - PubMed
  22. Anesthesiology. 1981 Oct;55(4):409-15 - PubMed
  23. Circulation. 1985 Jan;71(1):158-64 - PubMed
  24. Surgery. 1982 Mar;91(3):322-8 - PubMed
  25. Am Heart J. 1983 Jul;106(1 Pt 1):46-51 - PubMed
  26. Circ Res. 1979 May;44(5):672-8 - PubMed
  27. J Appl Physiol Respir Environ Exerc Physiol. 1979 Sep;47(3):582-90 - PubMed
  28. J Appl Physiol. 1969 Dec;27(6):863-73 - PubMed
  29. J Appl Physiol (1985). 1985 Oct;59(4):1178-84 - PubMed
  30. J Appl Physiol Respir Environ Exerc Physiol. 1983 Apr;54(4):1039-47 - PubMed
  31. Circ Res. 1980 Jan;46(1):125-32 - PubMed
  32. Am Rev Respir Dis. 1981 Aug;124(2):121-8 - PubMed
  33. Circ Res. 1980 Sep;47(3):467-72 - PubMed
  34. J Appl Physiol Respir Environ Exerc Physiol. 1981 Oct;51(4):798-805 - PubMed
  35. N Engl J Med. 1981 Feb 12;304(7):387-92 - PubMed
  36. Anesthesiology. 1975 Jan;42(1):45-55 - PubMed
  37. Fed Proc. 1981 Jun;40(8):2182-7 - PubMed
  38. Am J Med. 1963 Feb;34:147-50 - PubMed
  39. Crit Care Med. 1982 Oct;10(10):631-5 - PubMed
  40. J Appl Physiol. 1969 Dec;27(6):886-91 - PubMed
  41. J Appl Physiol Respir Environ Exerc Physiol. 1980 Apr;48(4):670-6 - PubMed
  42. J Appl Physiol Respir Environ Exerc Physiol. 1982 Feb;52(2):333-9 - PubMed
  43. Am J Physiol. 1948 Jan 1;152(1):162-74 - PubMed
  44. Nouv Presse Med. 1982 Jun 12;11(28):2143-5 - PubMed

MeSH terms

Publication Types