Display options
Share it on
Full text links
Silverchair Information Systems Free PMC Article

Biochem J. 1988 Nov 15;256(1):35-40. doi: 10.1042/bj2560035.

The small dermatan sulphate proteoglycans synthesized by fibroblasts derived from skin, synovium and gingiva show tissue-related heterogeneity.

The Biochemical journal

H Larjava, J Heino, T Krusius, E Vuorio, M Tammi

Affiliations

  1. Department of Periodontology, University of Turku, Finland.

PMID: 3223908 PMCID: PMC1135364 DOI: 10.1042/bj2560035
Free PMC Article

Abstract

Dermatan sulphate proteoglycans (DSPGs) synthesized in the presence of 35SO4 were characterized in culture media of fibroblast lines obtained from skin, synovium, and gingiva. The molecular mass of DSPG varied from 95-130 kDa as estimated by SDS/polyacrylamide-gel electrophoresis. Gingival fibroblasts constantly produced larger DSPGs than skin fibroblasts. This was due to the larger dermatan sulphate (DS) chains, which also showed tissue-related heterogeneity in the distribution of 4- and 6-sulphated disaccharide units. The N-glycosylated cores (44 and 47 kDa) obtained following chondroitinase ABC treatment were of identical size in all tissues. The cores from the different tissues were also of the same size (38 kDa) when addition of the N-linked oligosaccharides was inhibited by tunicamycin or when they were removed by N-glycanase treatment. No evidence for low-molecular-mass sulphated oligosaccharides was found. All tissues contained two mRNA species (1.6 and 1.9 kb) for the DSPG core protein. These data suggest that the pattern of transferase activities involved in the construction of DS chains differs from one tissue to another. This variation may modulate the functions of DSPG in the extracellular matrix.

References

  1. J Biol Chem. 1975 May 25;250(10):4007-21 - PubMed
  2. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7683-7 - PubMed
  3. Biochemistry. 1979 Nov 27;18(24):5294-9 - PubMed
  4. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201-5 - PubMed
  5. Biochem J. 1981 Jun 1;195(3):573-81 - PubMed
  6. Biochem J. 1981 Jul 1;197(1):213-6 - PubMed
  7. Biochem J. 1981 Jul 1;197(1):217-25 - PubMed
  8. Methods Enzymol. 1982;83:269-77 - PubMed
  9. Eur J Immunol. 1982 Oct;12(10):804-13 - PubMed
  10. Mol Cell Biol. 1983 May;3(5):787-95 - PubMed
  11. J Biol Chem. 1983 Sep 25;258(18):11326-34 - PubMed
  12. Biochem J. 1983 Oct 1;215(1):107-16 - PubMed
  13. Biochem J. 1984 Jun 1;220(2):575-82 - PubMed
  14. Biochem J. 1984 Aug 1;221(3):697-705 - PubMed
  15. Anal Biochem. 1984 Aug 1;140(2):354-9 - PubMed
  16. J Biol Chem. 1984 Nov 25;259(22):14144-50 - PubMed
  17. Biochem J. 1984 Nov 1;223(3):587-97 - PubMed
  18. Clin Chim Acta. 1985 Mar 15;146(2-3):111-8 - PubMed
  19. Biochem J. 1986 May 15;236(1):1-14 - PubMed
  20. Biochem J. 1986 Sep 1;238(2):465-74 - PubMed
  21. Arch Biochem Biophys. 1987 Mar;253(2):399-412 - PubMed
  22. Biochem J. 1987 Mar 15;242(3):761-6 - PubMed
  23. Biochim Biophys Acta. 1987 Dec 7;926(3):296-309 - PubMed
  24. Connect Tissue Res. 1987;16(4):367-76 - PubMed
  25. Connect Tissue Res. 1985;13(2):117-25 - PubMed
  26. J Histochem Cytochem. 1986 Aug;34(8):1013-9 - PubMed
  27. Annu Rev Biochem. 1986;55:539-67 - PubMed
  28. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1348-54 - PubMed
  29. J Biol Chem. 1986 Oct 15;261(29):13397-400 - PubMed
  30. Exp Cell Res. 1977 Feb;104(2):255-62 - PubMed

Substances

MeSH terms

Publication Types

LinkOut - more resources