Display options
Share it on

Neurosci Lett. 2021 Sep 25;762:136143. doi: 10.1016/j.neulet.2021.136143. Epub 2021 Jul 29.

Inhibition of serum and glucocorticoid regulated kinases by GSK650394 reduced infarct size in early cerebral ischemia-reperfusion with decreased BBB disruption.

Neuroscience letters

Oak Z Chi, Antonio Chiricolo, Xia Liu, Nikhil Patel, Estela Jacinto, Harvey R Weiss

Affiliations

  1. Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901-1977, USA. Electronic address: [email protected].
  2. Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901-1977, USA.
  3. Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.
  4. Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA.

PMID: 34332027 PMCID: PMC8434992 DOI: 10.1016/j.neulet.2021.136143

Abstract

Blood-brain barrier (BBB) disruption is one of the most important pathological changes following cerebral ischemia-reperfusion. We tested whether inhibition of the serum and glucocorticoid regulated kinase 1 (SGK1) would decrease BBB disruption and contribute to decreasing infarct size in the first few hours of cerebral ischemia-reperfusion within the thrombolysis therapy time window. After transient middle cerebral artery occlusion (MCAO), an SGK1 inhibitor GSK650394, or vehicle was administered into the lateral ventricle of rats. After one hour of MCAO and two hours of reperfusion, we determined BBB disruption using the transfer coefficient (K

Copyright © 2021 Elsevier B.V. All rights reserved.

Keywords: Blood-brain barrier; Brain protection; Cerebral ischemia-reperfusion; GSK650394; SGK1

References

  1. Sci Rep. 2015 Nov 09;5:16548 - PubMed
  2. Physiol Rev. 2021 Jul 1;101(3):1371-1426 - PubMed
  3. Stroke. 1989 Jan;20(1):84-91 - PubMed
  4. Biochem Pharmacol (Los Angel). 2016;5(4): - PubMed
  5. Brain Res. 2018 Mar 15;1683:48-54 - PubMed
  6. Stroke. 2013 Sep;44(9):2553-8 - PubMed
  7. Brain Res Mol Brain Res. 2004 Apr 7;123(1-2):121-5 - PubMed
  8. Neurosci Lett. 2016 Aug 15;628:171-8 - PubMed
  9. FASEB J. 2013 Jan;27(1):3-12 - PubMed
  10. Mol Cell Biol. 2001 Feb;21(3):952-65 - PubMed
  11. J Neurosci. 2012 Feb 29;32(9):3044-57 - PubMed
  12. Biochem J. 2008 Dec 15;416(3):375-85 - PubMed
  13. Neuropharmacology. 2018 May 15;134(Pt B):178-188 - PubMed
  14. Curr Neurovasc Res. 2014;11(3):254-62 - PubMed
  15. Cancer Res. 2008 Sep 15;68(18):7475-83 - PubMed
  16. Biochem J. 1999 Nov 15;344 Pt 1:189-97 - PubMed
  17. Front Cell Neurosci. 2018 Sep 04;12:288 - PubMed
  18. Neurochem Res. 2009 Jul;34(7):1249-54 - PubMed
  19. Sci Signal. 2019 Jun 11;12(585): - PubMed
  20. Brain Res. 2012 Feb 3;1436:1-12 - PubMed
  21. J Cereb Blood Flow Metab. 1996 Mar;16(2):327-33 - PubMed
  22. Physiol Rev. 2006 Oct;86(4):1151-78 - PubMed
  23. J Cereb Blood Flow Metab. 2019 Jun;39(6):1111-1121 - PubMed
  24. Tissue Barriers. 2016 Jan 28;4(1):e1143544 - PubMed
  25. Neurosci Lett. 2018 Aug 10;681:78-82 - PubMed
  26. Mol Cell. 2016 Sep 1;63(5):811-26 - PubMed
  27. Neuroscience. 2016 Mar 1;316:321-7 - PubMed
  28. J Cereb Blood Flow Metab. 2011 Sep;31(9):1942-57 - PubMed
  29. Brain Res Bull. 1987 Jan;18(1):73-85 - PubMed
  30. Pflugers Arch. 2009 Apr;457(6):1287-301 - PubMed
  31. Brain Res Brain Res Protoc. 2004 Apr;13(1):11-7 - PubMed
  32. Biochem Biophys Res Commun. 2011 Jul 29;411(2):227-34 - PubMed
  33. Cell Physiol Biochem. 2014;34(2):299-312 - PubMed
  34. Int J Stroke. 2018 Dec;13(9):949-984 - PubMed
  35. J Neurochem. 2016 Jul;138(2):354-61 - PubMed
  36. Arterioscler Thromb Vasc Biol. 2019 Nov;39(11):2240-2247 - PubMed
  37. Stroke. 2002 Jun;33(6):1706-11 - PubMed
  38. Eur J Pharmacol. 2019 Jul 15;855:202-207 - PubMed

Publication Types

Grant support