Display options
Share it on

J Mol Evol. 1987;26(1):74-86. doi: 10.1007/BF02111283.

Evolution in bacteria: evidence for a universal substitution rate in cellular genomes.

Journal of molecular evolution

H Ochman, A C Wilson

Affiliations

  1. Department of Biochemistry, University of California, Berkeley 94720.

PMID: 3125340 DOI: 10.1007/BF02111283

Abstract

This paper constructs a temporal scale for bacterial evolution by tying ecological events that took place at known times in the geological past to specific branch points in the genealogical tree relating the 16S ribosomal RNAs of eubacteria, mitochondria, and chloroplasts. One thus obtains a relationship between time and bacterial RNA divergence which can be used to estimate times of divergence between other branches in the bacterial tree. According to this approach, Salmonella typhimurium and Escherichia coli diverged between 120 and 160 million years (Myr) ago, a date which fits with evidence that the chief habitats occupied now by these two enteric species became available that long ago. The median extent of divergence between S. typhimurium and E. coli at synonymous sites for 21 kilobases of protein-coding DNA is 100%. This implies a silent substitution rate of 0.7-0.8%/Myr--a rate remarkably similar to that observed in the nuclear genes of mammals, invertebrates, and flowering plants. Similarities in the substitution rates of eucaryotes and procaryotes are not limited to silent substitutions in protein-coding regions. The average substitution rate for 16S rRNA in eubacteria is about 1%/50 Myr, similar to the average rate for 18S rRNA in vertebrates and flowering plants. Likewise, we estimate a mean rate of roughly 1%/25 Myr for 5S rRNA in both eubacteria and eucaryotes. For a few protein-coding genes of these enteric bacteria, the extent of silent substitution since the divergence of S. typhimurium and E. coli is much lower than 100%, owing to extreme bias in the usage of synonymous codons. Furthermore, in these bacteria, rates of amino acid replacement were about 20 times lower, on average, than the silent rate. By contrast, for the mammalian genes studied to date, the average replacement rate is only four to five times lower than the rate of silent substitution.

Cited by

References

  1. Science. 1980 Jul 25;209(4455):457-63 - PubMed
  2. Science. 1982 Mar 26;215(4540):1577-85 - PubMed
  3. Nucleic Acids Res. 1983 Feb 11;11(3):893-900 - PubMed
  4. J Mol Biol. 1983 Oct 5;169(4):775-97 - PubMed
  5. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1408-12 - PubMed
  6. FEBS Lett. 1984 Feb 27;167(2):263-8 - PubMed
  7. Mol Biol Evol. 1985 Mar;2(2):150-74 - PubMed
  8. Proc Natl Acad Sci U S A. 1986 Jan;83(2):217-20 - PubMed
  9. J Bacteriol. 1982 Oct;152(1):57-62 - PubMed
  10. Nat New Biol. 1973 Jun 13;243(128):199-200 - PubMed
  11. J Biol Chem. 1984 Jan 10;259(1):224-30 - PubMed
  12. J Bacteriol. 1985 Oct;164(1):230-6 - PubMed
  13. J Mol Evol. 1982;18(4):225-39 - PubMed
  14. Nucleic Acids Res. 1985 Feb 11;13(3):673-85 - PubMed
  15. Cell. 1980 Jun;20(2):555-66 - PubMed
  16. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9090-3 - PubMed
  17. J Bacteriol. 1982 Jun;150(3):1467-71 - PubMed
  18. Syst Appl Microbiol. 1985;6:143-51 - PubMed
  19. Eur J Biochem. 1985 Feb 1;146(3):597-603 - PubMed
  20. J Bacteriol. 1986 Jan;165(1):161-6 - PubMed
  21. Science. 1983 Jun 3;220(4601):1016-20 - PubMed
  22. J Mol Evol. 1984;21(1):1-13 - PubMed
  23. EMBO J. 1982;1(1):27-33 - PubMed
  24. J Mol Biol. 1980 Oct 5;142(4):503-17 - PubMed
  25. Cell. 1983 Jun;33(2):615-22 - PubMed
  26. J Bacteriol. 1967 Jan;93(1):510-2 - PubMed
  27. J Mol Biol. 1982 Mar 5;155(3):235-46 - PubMed
  28. J Biol Chem. 1984 Nov 25;259(22):14282-5 - PubMed
  29. Annu Rev Microbiol. 1985;39:391-417 - PubMed
  30. Philos Trans R Soc Lond B Biol Sci. 1986 Jan 29;312(1154):343-54 - PubMed
  31. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5244-8 - PubMed
  32. Science. 1985 Nov 1;230(4725):556-8 - PubMed
  33. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741-5 - PubMed
  34. J Theor Biol. 1980 Feb 7;82(3):353-62 - PubMed
  35. Mol Biol Evol. 1986 Mar;3(2):138-55 - PubMed
  36. J Gen Microbiol. 1983 Sep;129(9):2715-26 - PubMed
  37. Science. 1986 Oct 10;234(4773):194-6 - PubMed
  38. J Mol Biol. 1985 Jun 5;183(3):327-40 - PubMed
  39. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3716-20 - PubMed
  40. Science. 1985 May 31;228(4703):1087-9 - PubMed
  41. Cold Spring Harb Symp Quant Biol. 1983;47 Pt 2:1087-97 - PubMed
  42. J Mol Biol. 1980 Oct 5;142(4):489-502 - PubMed
  43. J Mol Biol. 1981 Feb 15;146(1):1-21 - PubMed
  44. Nature. 1986 Mar 6;320(6057):27-33 - PubMed
  45. J Mol Biol. 1986 Apr 20;188(4):499-515 - PubMed
  46. Proc Natl Acad Sci U S A. 1979 Jan;76(1):381-5 - PubMed
  47. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1383-7 - PubMed
  48. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7989-93 - PubMed
  49. J Bacteriol. 1972 Jun;110(3):793-802 - PubMed
  50. Eur J Biochem. 1983 Aug 15;134(3):497-502 - PubMed
  51. Annu Rev Microbiol. 1983;37:369-98 - PubMed
  52. J Mol Evol. 1984-1985;21(3):259-69 - PubMed
  53. J Mol Evol. 1985;22(1):20-31 - PubMed
  54. Nucleic Acids Res. 1984 Jun 11;12(11):4731-45 - PubMed
  55. Sci Am. 1980 Mar;242(3):137-53 - PubMed
  56. Proc Natl Acad Sci U S A. 1986 Feb;83(3):688-92 - PubMed
  57. Science. 1986 Mar 21;231(4744):1393-8 - PubMed
  58. Mol Biol Evol. 1984 Nov;1(6):456-72 - PubMed
  59. J Theor Biol. 1965 Mar;8(2):357-66 - PubMed
  60. Nucleic Acids Res. 1986 Mar 25;14(6):2779-98 - PubMed
  61. J Mol Evol. 1985;22(1):32-8 - PubMed
  62. Nature. 1984 May 31-Jun 6;309(5967):425-30 - PubMed
  63. Nucleic Acids Res. 1982 Nov 25;10(22):7055-74 - PubMed
  64. Nucleic Acids Res. 1984 Jul 11;12(13):5441-8 - PubMed
  65. Mol Biol Evol. 1987 May;4(3):222-30 - PubMed
  66. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1164-8 - PubMed
  67. J Mol Biol. 1983 Aug 15;168(3):451-68 - PubMed
  68. Nucleic Acids Res. 1986;14 Suppl:r73-118 - PubMed
  69. Nucleic Acids Res. 1981 Apr 10;9(7):1743-55 - PubMed
  70. Nature. 1986 Jan 16-22;319(6050):234-8 - PubMed
  71. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4443-7 - PubMed
  72. Proc Natl Acad Sci U S A. 1984 Jan;81(2):493-7 - PubMed
  73. Science. 1978 Jan 27;199(4327):395-403 - PubMed
  74. Science. 1983 Jul 22;221(4608):378-80 - PubMed
  75. J Mol Evol. 1971;1(1):26-45 - PubMed
  76. J Bacteriol. 1972 Jul;111(1):163-8 - PubMed
  77. Gene. 1985;40(1):67-78 - PubMed
  78. Gene. 1982 May;18(2):157-63 - PubMed
  79. Annu Rev Biochem. 1977;46:573-639 - PubMed
  80. J Biol Chem. 1985 Apr 25;260(8):4724-8 - PubMed
  81. Nature. 1977 Jan 6;265(5589):24-8 - PubMed
  82. Nucleic Acids Res. 1986;14 Suppl:r1-59 - PubMed
  83. J Bacteriol. 1978 Mar;133(3):1089-95 - PubMed
  84. Mol Biol Evol. 1985 Jan;2(1):13-34 - PubMed

Substances

MeSH terms

Publication Types

Grant support

LinkOut - more resources