Display options
Share it on

Molecules. 2021 May 18;26(10). doi: 10.3390/molecules26102997.

Direct Visualization of Amlodipine Intervention into Living Cells by Means of Fluorescence Microscopy.

Molecules (Basel, Switzerland)

Christine Quentin, Rūta Gerasimaitė, Alexandra Freidzon, Levon S Atabekyan, Gražvydas Lukinavičius, Vladimir N Belov, Gyuzel Y Mitronova

Affiliations

  1. Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
  2. Chromatin Imaging and Labeling Group, Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
  3. Federal Research Center Crystallography and Photonics, Photochemistry Center, Russian Academy of Sciences, Novatorov 7a, 119421 Moscow, Russia.
  4. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoye Shosse 31, 115409 Moscow, Russia.

PMID: 34070063 PMCID: PMC8158129 DOI: 10.3390/molecules26102997

Abstract

Amlodipine, a unique long-lasting calcium channel antagonist and antihypertensive drug, has weak fluorescence in aqueous solutions. In the current paper, we show that direct visualization of amlodipine in live cells is possible due to the enhanced emission in cellular environment. We examined the impact of pH, polarity and viscosity of the environment as well as protein binding on the spectral properties of amlodipine in vitro, and used quantum chemical calculations for assessing the mechanism of fluorescence quenching in aqueous solutions. The confocal fluorescence microscopy shows that the drug readily penetrates the plasma membrane and accumulates in the intracellular vesicles. Visible emission and photostability of amlodipine allow confocal time-lapse imaging and the drug uptake monitoring.

Keywords: amlodipine; fluorescence; live cell imaging; lysosomes; microscopy

References

  1. Nature. 2016 Sep 1;537(7618):117-121 - PubMed
  2. J Med Chem. 1986 Sep;29(9):1696-702 - PubMed
  3. Nat Chem. 2009 Apr;1(1):69-73 - PubMed
  4. Eur J Pharm Sci. 2008 Jan;33(1):91-9 - PubMed
  5. Cell Discov. 2020 Dec 22;6(1):96 - PubMed
  6. Biochem Pharmacol. 1974 Sep 15;23(18):2495-531 - PubMed
  7. Structure. 2009 Apr 15;17(4):489-98 - PubMed
  8. Molecules. 2019 Jan 30;24(3): - PubMed
  9. J Org Chem. 2006 Mar 3;71(5):2037-45 - PubMed
  10. J Org Chem. 2009 Sep 4;74(17):6615-22 - PubMed
  11. Chem Sci. 2018 Dec 12;10(7):1962-1970 - PubMed
  12. BMC Bioinformatics. 2017 Nov 29;18(1):529 - PubMed
  13. ACS Nano. 2018 May 22;12(5):4398-4407 - PubMed
  14. Drug Metab Dispos. 2013 Apr;41(4):897-905 - PubMed
  15. iScience. 2018 Sep 28;7:1-15 - PubMed
  16. Drugs. 1991 Mar;41(3):478-505 - PubMed
  17. Arterioscler Thromb Vasc Biol. 2003 Dec;23(12):2155-63 - PubMed
  18. Am J Cardiol. 1989 Nov 7;64(17):10I-18I; discussion 18I-20I - PubMed
  19. Xenobiotica. 1988 Feb;18(2):169-82 - PubMed
  20. Nat Protoc. 2006;1(6):2916-21 - PubMed
  21. Br J Pharmacol. 1996 Jun;118(3):748-54 - PubMed
  22. J Microsc. 2000 Jun;198(Pt 3):246-59 - PubMed
  23. J Cardiovasc Pharmacol. 1988;12 Suppl 7:S55-9 - PubMed

Substances

MeSH terms

Publication Types

Grant support