Display options
Share it on

Sci Data. 2021 Mar 25;8(1):93. doi: 10.1038/s41597-021-00818-w.

An updated map of Trypanosoma cruzi histone post-translational modifications.

Scientific data

Rafael Fogaça de Almeida, Matheus Fernandes, Lyris Martins Franco de Godoy

Affiliations

  1. Instituto Carlos Chagas, Fiocruz Parana, Curitiba, Parana, Brazil.
  2. Instituto Carlos Chagas, Fiocruz Parana, Curitiba, Parana, Brazil. [email protected].

PMID: 33767201 PMCID: PMC7994815 DOI: 10.1038/s41597-021-00818-w

Abstract

In humans and other eukaryotes, histone post-translational modifications (hPTMs) play an essential role in the epigenetic control of gene expression. In trypanosomatid parasites, conversely, gene regulation occurs mainly at the post-transcriptional level. However, our group has recently shown that hPTMs are abundant and varied in Trypanosoma cruzi, the etiological agent of Chagas Disease, signaling for possible conserved epigenetic functions. Here, we applied an optimized mass spectrometry-based proteomic workflow to provide a high-confidence comprehensive map of hPTMs, distributed in all canonical, variant and linker histones of T. cruzi. Our work expands the number of known T. cruzi hPTMs by almost 2-fold, representing the largest dataset of hPTMs available to any trypanosomatid to date, and can be used as a basis for functional studies on the dynamic regulation of chromatin by epigenetic mechanisms and the selection of candidates for the development of epigenetic drugs against trypanosomatids.

References

  1. Nat Rev Drug Discov. 2012 Apr 13;11(5):384-400 - PubMed
  2. Chromosoma. 2009 Aug;118(4):487-99 - PubMed
  3. Cell Stress Chaperones. 2019 Sep;24(5):927-936 - PubMed
  4. Mol Cell. 2006 Aug;23(4):497-507 - PubMed
  5. Sci Rep. 2017 Aug 29;7(1):9899 - PubMed
  6. J Proteome Res. 2011 May 6;10(5):2377-88 - PubMed
  7. Mol Biochem Parasitol. 2006 Dec;150(2):268-77 - PubMed
  8. J Proteome Res. 2016 Jun 3;15(6):2039-51 - PubMed
  9. Genes Dev. 2009 May 1;23(9):1063-76 - PubMed
  10. Rapid Commun Mass Spectrom. 2003;17(20):2337-42 - PubMed
  11. Mol Cell Proteomics. 2012 Apr;11(4):M111.010587 - PubMed
  12. BMC Genomics. 2009 Apr 08;10:152 - PubMed
  13. Expert Opin Drug Discov. 2017 Apr;12(4):345-362 - PubMed
  14. PLoS One. 2011;6(9):e25381 - PubMed
  15. Methods Enzymol. 2012;512:3-28 - PubMed
  16. Open Biol. 2019 Jun 28;9(6):190072 - PubMed
  17. Mol Microbiol. 2010 Sep;77(5):1237-45 - PubMed
  18. Nat Commun. 2017 Oct 26;8(1):1141 - PubMed
  19. Nat Protoc. 2007;2(4):933-8 - PubMed
  20. Mol Cell Proteomics. 2005 Dec;4(12):2010-21 - PubMed
  21. Nat Protoc. 2007;2(8):1896-906 - PubMed
  22. J Proteomics. 2020 Aug 15;225:103847 - PubMed
  23. J Biol Chem. 2008 Jun 6;283(23):15884-92 - PubMed
  24. Mol Biochem Parasitol. 2010 Aug;172(2):141-4 - PubMed
  25. J Proteome Res. 2018 Jan 5;17(1):374-385 - PubMed
  26. Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450 - PubMed
  27. Nat Rev Genet. 2016 Sep 15;17(10):630-41 - PubMed
  28. Trends Genet. 2016 Jan;32(1):42-56 - PubMed
  29. Mol Cell Proteomics. 2017 Jan;16(1):23-38 - PubMed
  30. J Proteome Res. 2011 Jul 1;10(7):2930-6 - PubMed
  31. PLoS Biol. 2008 Jul 1;6(7):e161 - PubMed
  32. Future Microbiol. 2009 Oct;4(8):1065-74 - PubMed
  33. Nat Methods. 2013 Oct;10(10):989-91 - PubMed
  34. Mol Biochem Parasitol. 2005 Mar;140(1):75-86 - PubMed
  35. Nat Protoc. 2006;1(6):2856-60 - PubMed
  36. Nat Struct Mol Biol. 2013 Jun;20(6):657-61 - PubMed
  37. Rev Inst Med Trop Sao Paulo. 1964 May-Jun;6:93-100 - PubMed
  38. J Proteome Res. 2017 Mar 3;16(3):1167-1179 - PubMed

Substances

MeSH terms

Publication Types