Display options
Share it on

BMC Vet Res. 2020 Nov 30;16(1):466. doi: 10.1186/s12917-020-02692-x.

Platelet proteome changes in dogs with congestive heart failure.

BMC veterinary research

Pinar Levent, Meriç Kocaturk, Emel Akgun, Ahmet Saril, Ozge Cevik, Ahmet Tarik Baykal, Ryou Tanaka, Jose Joaquin Ceron, Zeki Yilmaz

Affiliations

  1. Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
  2. Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul, Turkey.
  3. Department of Basic Science, Medical Biochemistry, Adnan Menderes University School of Medicine, Aydin, Turkey.
  4. Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan.
  5. Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100, Murcia, Spain.
  6. Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey. [email protected].

PMID: 33256720 PMCID: PMC7708215 DOI: 10.1186/s12917-020-02692-x

Abstract

BACKGROUND: Platelets play a central role in the development of cardiovascular diseases and changes in their proteins are involved in the pathophysiology of heart diseases in humans. There is lack of knowledge about the possible role of platelets in congestive heart failure (CHF) in dogs. Thus, this study aimed to investigate the changes in global platelet proteomes in dogs with CHF, to clarify the possible role of platelets in the physiopathology of this disease. Healthy-dogs (n = 10) and dogs with acute CHF due to myxomatous mitral valve disease (MMVD, n = 10) were used. Acute CHF was defined based on the clinical (increased respiratory rate or difficulty breathing) and radiographic findings of pulmonary edema. Dogs Blood samples were collected into tubes with acid-citrate-dextrose, and platelet-pellets were obtained by centrifuge and washing steps. Platelet-proteomes were identified using LC-MS based label-free differential proteome expression analysis method and matched according to protein database for Canis lupus familiaris.

RESULTS: Totally 104 different proteins were identified in the platelets of the dogs being 4 out of them were significantly up-regulated and 6 down-regulated in acute CHF dogs. Guanine-nucleotide-binding protein, apolipoproteins (A-II and C-III) and clusterin levels increased, but CXC-motif-chemokine-10, cytochrome-C-oxidase-subunit-2, cathepsin-D, serine/threonine-protein-phosphatase-PP1-gamma-catalytic-subunit, creatine-kinase-B-type and myotrophin levels decreased in acute CHF dogs. These proteins are associated with several molecular functions, biological processes, signaling systems and immune-inflammatory responses.

CONCLUSION: This study describes by first time the changes in the protein composition in platelets of dogs with acute CHF due to MMVD. Our findings provide a resource for increase the knowledge about the proteome of canine platelets and their roles in CHF caused by MMVD and could be a tool for further investigations about the prevention and treatment of this disease.

Keywords: Dogs; Heart failure; Myxomatous mitral valve disease; Platelet proteomic

References

  1. J Vet Sci. 2010 Sep;11(3):257-64 - PubMed
  2. Mol Cell Biol. 2002 Jun;22(12):4124-35 - PubMed
  3. Cancer Treat Rev. 2018 Feb;63:40-47 - PubMed
  4. J Neuroendocrinol. 2011 May;23(5):456-63 - PubMed
  5. Lab Invest. 2018 Oct;98(10):1291-1299 - PubMed
  6. J Vet Intern Med. 2007 May-Jun;21(3):451-7 - PubMed
  7. J Small Anim Pract. 2000 Mar;41(3):97-103 - PubMed
  8. Herz. 2015 Sep;40(6):912-20 - PubMed
  9. J Vet Intern Med. 2019 Mar;33(2):489-498 - PubMed
  10. J Vet Intern Med. 2004 May-Jun;18(3):311-21 - PubMed
  11. Biomed Res Int. 2014;2014:893106 - PubMed
  12. Mayo Clin Proc. 2010 Feb;85(2):180-95 - PubMed
  13. J Transl Med. 2016 Jan 20;14:18 - PubMed
  14. Neurology. 1983 Mar;33(3):384-6 - PubMed
  15. J Vet Med. 2014;2014:589873 - PubMed
  16. Am J Physiol Cell Physiol. 2009 Oct;297(4):C928-34 - PubMed
  17. Crit Care. 2014 Jun 30;18(3):R136 - PubMed
  18. Acta Cardiol Sin. 2017 Jul;33(4):393-400 - PubMed
  19. Vet Med (Auckl). 2014 Jun 21;5:1-9 - PubMed
  20. Proteomics Clin Appl. 2020 Nov;14(6):e2000035 - PubMed
  21. Exp Clin Cardiol. 2003 Winter;8(4):173-83 - PubMed
  22. Sci Rep. 2015 Jul 16;5:12235 - PubMed
  23. Circulation. 1981 Mar;63(3):552-9 - PubMed
  24. PLoS One. 2012;7(6):e39110 - PubMed
  25. Circ Res. 2018 Aug 31;123(6):716-735 - PubMed
  26. J Vet Cardiol. 2017 Feb;19(1):24-34 - PubMed
  27. Cold Spring Harb Symp Quant Biol. 2002;67:439-44 - PubMed
  28. J Mol Cell Cardiol. 2015 Dec;89(Pt B):116-8 - PubMed
  29. Atherosclerosis. 1984 Nov;53(2):151-62 - PubMed
  30. Res Vet Sci. 2009 Apr;86(2):320-4 - PubMed
  31. Lipids Health Dis. 2016 Oct 22;15(1):184 - PubMed
  32. J Thromb Haemost. 2010 Mar;8(3):463-71 - PubMed
  33. Curr Opin Endocrinol Diabetes Obes. 2015 Apr;22(2):119-25 - PubMed
  34. PLoS One. 2019 Nov 13;14(11):e0224891 - PubMed
  35. Am J Pathol. 1996 Jun;148(6):1971-83 - PubMed
  36. Circulation. 2000 Feb 1;101(4):352-5 - PubMed
  37. Front Pharmacol. 2018 Aug 10;9:904 - PubMed
  38. Oxid Med Cell Longev. 2017;2017:9747296 - PubMed
  39. J Biol Chem. 1996 Sep 27;271(39):24286-93 - PubMed
  40. Front Cardiovasc Med. 2019 Aug 07;6:109 - PubMed
  41. J Proteomics. 2013 Dec 6;94:337-45 - PubMed
  42. PLoS One. 2016 Jun 23;11(6):e0158287 - PubMed
  43. J Vet Intern Med. 2019 May;33(3):1127-1140 - PubMed
  44. N Engl J Med. 1996 Oct 17;335(16):1182-9 - PubMed
  45. Exp Cell Res. 2011 Mar 10;317(5):620-31 - PubMed
  46. Curr Atheroscler Rep. 2016 Oct;18(10):59 - PubMed
  47. J Cardiovasc Transl Res. 2016 Aug;9(4):302-14 - PubMed
  48. Exp Hematol. 2010 May;38(5):341-50 - PubMed
  49. Res Vet Sci. 2012 Feb;92(1):24-9 - PubMed
  50. Mol Cell Biochem. 2004 Jul;262(1-2):79-89 - PubMed
  51. J Vet Intern Med. 2015 Nov-Dec;29(6):1502-9 - PubMed
  52. Circulation. 2008 Mar 18;117(11):1378-87 - PubMed
  53. Antioxid Redox Signal. 2013 Oct 1;19(10):1095-109 - PubMed
  54. J Vet Intern Med. 2005 Jul-Aug;19(4):515-22 - PubMed
  55. Vet Clin North Am Small Anim Pract. 2004 Sep;34(5):1209-26, vii-viii - PubMed
  56. Mol Cell Proteomics. 2008 Jan;7(1):193-203 - PubMed
  57. Int J Mol Sci. 2012 Oct 29;13(11):13926-48 - PubMed
  58. Biochim Biophys Acta. 2010 Jan;1802(1):100-10 - PubMed
  59. Curr Pharm Des. 2011;17(18):1818-24 - PubMed
  60. J Clin Lipidol. 2017 Jan - Feb;11(1):178-184 - PubMed
  61. Eur Heart J. 2006 Nov;27(22):2623-31 - PubMed
  62. J Am Coll Cardiol. 2002 Jun 5;39(11):1773-9 - PubMed
  63. Atherosclerosis. 2002 Sep;164(1):1-13 - PubMed
  64. J Vet Intern Med. 2010 Nov-Dec;24(6):1358-68 - PubMed
  65. Expert Rev Proteomics. 2018 Jun;15(6):467-476 - PubMed
  66. Vet Pathol. 2014 Mar;51(2):351-62 - PubMed
  67. J Cell Biol. 2002 Dec 23;159(6):1019-28 - PubMed
  68. J Vet Intern Med. 2002 Jul-Aug;16(4):446-51 - PubMed
  69. Cardiovasc Res. 2010 Aug 1;87(3):524-34 - PubMed
  70. J Vet Intern Med. 2012 Mar-Apr;26(2):370-6 - PubMed
  71. Curr Med Chem. 2012;19(27):4662-70 - PubMed
  72. J Mol Cell Cardiol. 1991 Apr;23(4):439-52 - PubMed
  73. Free Radic Biol Med. 2012 Sep 15;53(6):1252-63 - PubMed
  74. Handb Exp Pharmacol. 2017;243:371-393 - PubMed
  75. J Am Coll Cardiol. 2003 Aug 20;42(4):719-25 - PubMed
  76. Mol Pharmacol. 1992 Jan;41(1):154-62 - PubMed
  77. Thromb Res. 1996 Aug 15;83(4):299-306 - PubMed

Substances

MeSH terms

Publication Types

Grant support