Display options
Share it on

Hum Genet. 2021 Jan;140(1):43-57. doi: 10.1007/s00439-020-02229-0. Epub 2020 Oct 27.

Genetic analyses of a large cohort of infertile patients with globozoospermia, DPY19L2 still the main actor, GGN confirmed as a guest player.

Human genetics

Tristan Celse, Caroline Cazin, Flore Mietton, Guillaume Martinez, Delphine Martinez, Nicolas Thierry-Mieg, Amandine Septier, Catherine Guillemain, Julie Beurois, Antoine Clergeau, Selima Fourati Ben Mustapha, Mahmoud Kharouf, Abdelali Zoghmar, Ahmed Chargui, Aline Papaxanthos, Béatrice Dorphin, Bernard Foliguet, Chema Triki, Christophe Sifer, Dominique Lauton, Gérard Tachdjian, Gilles Schuler, Hervé Lejeune, Jacques Puechberty, Julien Bessonnat, Laurent Pasquier, Lionel Mery, Marine Poulain, Myriam Chaabouni, Nathalie Sermondade, Rosalie Cabry, Sebti Benbouhadja, Ségolène Veau, Cynthia Frapsauce, Valérie Mitchell, Vincent Achard, Veronique Satre, Sylviane Hennebicq, Raoudha Zouari, Christophe Arnoult, Zine-Eddine Kherraf, Charles Coutton, Pierre F Ray

Affiliations

  1. Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France.
  2. CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France.
  3. CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France.
  4. Université Grenoble Alpes, CNRS, TIMC-IMAG, 38000, Grenoble, France.
  5. Pôle Femmes-Parents-Enfants, Centre Clinico-Biologique AMP-CECOS, Plateforme Cancer et Fertilité ONCOPACA-Corse, Assistance-Publique des Hôpitaux de Marseille (AP-HM), Marseille, France.
  6. Aix Marseille University, INSERM, MMG, UMR_S 1251, Marseille, France.
  7. Diabetes Care Unit, University Hospital of Caen, Caen, France.
  8. Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003, Tunis, Tunisia.
  9. Reproduction Sciences and Surgery Clinique, Ibn Rochd, Constantine, Algeria.
  10. Faculté de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire (CHU) Cochin, Service d'Histologie-Embryologie-Biologie de la Reproduction, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
  11. Department of Obstetrics, Gynecology and Reproductive Medicine, Bordeaux University Hospital, Bordeaux, France.
  12. AMP74, CH Alpes Léman, Contamine-sur-Arve, France.
  13. Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France.
  14. Centre d'AMP, Clinique Hannibal, Les Berges du Lac, 1053, Tunis, Tunisia.
  15. Service de Biologie de la Reproduction, d'Histo-Embryologie et Cytogénétique, Hôpital Jean-Verdier, Avenue du 14 Juillet, 93140, Bondy, France.
  16. Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France.
  17. UMR 967, INSERM, Service d'Histologie Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud, AP-HP, Clamart, France.
  18. Gynécologie Obstétrique, Sallanches, France.
  19. Reproductive Medicine Department, Hospices Civils de Lyon, Lyon, France.
  20. Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université Montpelier, Montpellier, France.
  21. CHU de Grenoble, UF de Biologie de la Procréation, 38000, Grenoble, France.
  22. Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Rennes, France.
  23. Service de Médecine de la Reproduction, CHU de Saint-Étienne, Hôpital Nord, 42055, Saint-Étienne Cedex 2, France.
  24. Department of Obstetrics and Gynecology, Hôpital Foch, Université de Paris Ouest (UVSQ), Suresnes, France.
  25. Service de Biologie de la Reproduction-CECOS, Hôpital Tenon, AP-HP, 75020, Paris, France.
  26. Department of Obstetrics, Gynaecology and Reproductive Medicine, Picardie University Jules Verne, Amiens University Medical Centre, Amiens, France.
  27. CHU, Centre d'AMP-CECOS, University Rennes, 16 Boulevard de Bulgarie, 35000, Rennes, France.
  28. CHU Bretonneau, Médecine et Biologie de la Reproduction-CECOS, Tours, France.
  29. EA 4308, Department of Reproductive Biology and Spermiology-CECOS Lille, University Medical Center, 59037, Lille, France.
  30. CECOS-Laboratoire de Biologie de la Reproduction, Pôle de Gynécologie Obstétrique et Reproduction (Gynépôle), Assistance Publique-Hôpitaux de Marseille (AP-HM) la Conception, 13005, Marseille, France.
  31. Centre Clinico-Biologique d'Assistance Médicale à la Procréation, Pôle de Gynécologie Obstétrique et Reproduction (Gynépôle), Assistance Publique-Hôpitaux de Marseille (AP-HM) la Conception, 13005, Marseille, France.
  32. Faculté de Médecine, Institut Méditerranéen de Biodiversité et d'Écologie (IMBE UMR 7263), Equipe Biogénotoxicologie, Santé Humaine et Environnement, Aix Marseille Université, CNRS, IRD, Université Avignon, 27, Boulevard Jean-Moulin, 13385, Marseille Cedex 5, France.
  33. Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France. [email protected].
  34. CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France. [email protected].

PMID: 33108537 DOI: 10.1007/s00439-020-02229-0

Abstract

Globozoospermia is a rare phenotype of primary male infertility inducing the production of round-headed spermatozoa without acrosome. Anomalies of DPY19L2 account for 50-70% of all cases and the entire deletion of the gene is by far the most frequent defect identified. Here, we present a large cohort of 69 patients with 20-100% of globozoospermia. Genetic analyses including multiplex ligation-dependent probe amplification, Sanger sequencing and whole-exome sequencing identified 25 subjects with a homozygous DPY19L2 deletion (36%) and 14 carrying other DPY19L2 defects (20%). Overall, 11 deleterious single-nucleotide variants were identified including eight novel and three already published mutations. Patients with a higher rate of round-headed spermatozoa were more often diagnosed and had a higher proportion of loss of function anomalies, highlighting a good genotype phenotype correlation. No gene defects were identified in patients carrying < 50% of globozoospermia while diagnosis efficiency rose to 77% for patients with > 50% of globozoospermia. In addition, results from whole-exome sequencing were scrutinized for 23 patients with a DPY19L2 negative diagnosis, searching for deleterious variants in the nine other genes described to be associated with globozoospermia in human (C2CD6, C7orf61, CCDC62, CCIN, DNAH17, GGN, PICK1, SPATA16, and ZPBP1). Only one homozygous novel truncating variant was identified in the GGN gene in one patient, confirming the association of GGN with globozoospermia. In view of these results, we propose a novel diagnostic strategy focusing on patients with at least 50% of globozoospermia and based on a classical qualitative PCR to detect DPY19L2 homozygous deletions. In the absence of the latter, we recommend to perform whole-exome sequencing to search for defects in DPY19L2 as well as in the other previously described candidate genes.

References

  1. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. https://doi.org/10.1038/nmeth0410-248 - PubMed
  2. Alimohammadi F, Ebrahimi Nasab M, Rafaee A et al (2020) Deletion of dpy-19 like 2 (DPY19L2) gene is associated with total but not partial globozoospermia. Reprod Fertil Dev. https://doi.org/10.1071/RD19025 - PubMed
  3. Anton-Lamprecht I, Kotzur B, Schopf E (1976) Round-headed human spermatozoa. Fertil Steril 27:685–693. https://doi.org/10.1016/s0015-0282(16)41900-x - PubMed
  4. Buettner FFR, Ashikov A, Tiemann B et al (2013) C. elegans DPY-19 is a C-mannosyltransferase glycosylating thrombospondin repeats. Mol Cell 50:295–302. https://doi.org/10.1016/j.molcel.2013.03.003 - PubMed
  5. Chemes HE (2018) Phenotypic varieties of sperm pathology: genetic abnormalities or environmental influences can result in different patterns of abnormal spermatozoa. Anim Reprod Sci 194:41–56. https://doi.org/10.1016/j.anireprosci.2018.04.074 - PubMed
  6. Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560 - PubMed
  7. Chianese C, Fino MG, Riera Escamilla A et al (2015) Comprehensive investigation in patients affected by sperm macrocephaly and globozoospermia. Andrology 3:203–212. https://doi.org/10.1111/andr.12016 - PubMed
  8. Cooper TG, Noonan E, von Eckardstein S et al (2010) World Health Organization reference values for human semen characteristics*‡. Hum Reprod Update 16:231–245. https://doi.org/10.1093/humupd/dmp048 - PubMed
  9. Coutton C, Vieville G, Satre V et al (2012a) Multiplex ligation-dependent probe amplification (MLPA) et sondes « à façon » entièrement synthétiques. Guide pratique, recommandations et expérience au CHU de Grenoble. IRBM 33:227–235. https://doi.org/10.1016/j.irbm.2012.04.004 - PubMed
  10. Coutton C, Zouari R, Abada F et al (2012b) MLPA and sequence analysis of DPY19L2 reveals point mutations causing globozoospermia. Hum Reprod 27:2549–2558. https://doi.org/10.1093/humrep/des160 - PubMed
  11. Coutton C, Abada F, Karaouzene T et al (2013) Fine characterisation of a recombination hotspot at the DPY19L2 locus and resolution of the paradoxical excess of duplications over deletions in the general population. PLoS Genet 9:e1003363. https://doi.org/10.1371/journal.pgen.1003363 - PubMed
  12. Coutton C, Escoffier J, Martinez G et al (2015) Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update 21:455–485. https://doi.org/10.1093/humupd/dmv020 - PubMed
  13. Dam AHDM, Koscinski I, Kremer JAM et al (2007) Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet 81:813–820. https://doi.org/10.1086/521314 - PubMed
  14. Dam AH, Ramos L, Dijkman HB et al (2011) Morphology of partial globozoospermia. J Androl 32:199–206. https://doi.org/10.2164/jandrol.109.009530 - PubMed
  15. Datta J, Palmer MJ, Tanton C et al (2016) Prevalence of infertility and help seeking among 15 000 women and men. Hum Reprod 31:2108–2118. https://doi.org/10.1093/humrep/dew123 - PubMed
  16. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclaturess extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12. https://doi.org/10.1002/(SICI)1098-1004(200001)15:1%3c7::AID-HUMU4%3e3.0.CO;2-N - PubMed
  17. Desmet F-O, Hamroun D, Lalande M et al (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67. https://doi.org/10.1093/nar/gkp215 - PubMed
  18. Elinati E, Kuentz P, Redin C et al (2012) Globozoospermia is mainly due to DPY19L2 deletion via non-allelic homologous recombination involving two recombination hotspots. Hum Mol Genet 21:3695–3702. https://doi.org/10.1093/hmg/dds200 - PubMed
  19. ElInati E, Fossard C, Okutman O et al (2016) A new mutation identified in SPATA16 in two globozoospermic patients. J Assist Reprod Genet 33:815–820. https://doi.org/10.1007/s10815-016-0715-3 - PubMed
  20. Ghédir H, Ibala-Romdhane S, Okutman O et al (2016) Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia. Mol Hum Reprod 22:35–45. https://doi.org/10.1093/molehr/gav061 - PubMed
  21. Ghédir H, Braham A, Viville S et al (2019) Comparison of sperm morphology and nuclear sperm quality in SPATA16- and DPY19L2-mutated globozoospermic patients. Andrologia 51:e13277. https://doi.org/10.1111/and.13277 - PubMed
  22. Guan R, Wen X-Y, Wu J et al (2012) Knockdown of ZNF403 inhibits cell proliferation and induces G2/M arrest by modulating cell-cycle mediators. Mol Cell Biochem 365:211–222. https://doi.org/10.1007/s11010-012-1262-6 - PubMed
  23. Han T, Wang L, Tang W et al (2020) GGNBP1 ensures proper spermiogenesis in response to stress in mice. Biochem Biophys Res Commun 525:706–713. https://doi.org/10.1016/j.bbrc.2020.02.118 - PubMed
  24. Harbuz R, Zouari R, Pierre V et al (2011) A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet 88:351–361. https://doi.org/10.1016/j.ajhg.2011.02.007 - PubMed
  25. Jamsai D, Bianco DM, Smith SJ et al (2008) Characterization of gametogenetin 1 (GGN1) and its potential role in male fertility through the interaction with the ion channel regulator, cysteine-rich secretory protein 2 (CRISP2) in the sperm tail. Reproduction 135:751–759. https://doi.org/10.1530/REP-07-0485 - PubMed
  26. Jamsai D, O’Connor AE, DeBoer KD et al (2013) Loss of GGN leads to pre-implantation embryonic lethality and compromised male meiotic DNA double strand break repair in the mouse. PLoS ONE 8:e56955. https://doi.org/10.1371/journal.pone.0056955 - PubMed
  27. Kim S, Scheffler K, Halpern AL et al (2018) Strelka2: fast and accurate calling of germline and somatic variants. Nat Methods 15:591–594. https://doi.org/10.1038/s41592-018-0051-x - PubMed
  28. Kopanos C, Tsiolkas V, Kouris A et al (2019) VarSome: the human genomic variant search engine. Bioinformatics 35:1978–1980. https://doi.org/10.1093/bioinformatics/bty897 - PubMed
  29. Koscinski I, ElInati E, Fossard C et al (2011) DPY19L2 deletion as a major cause of globozoospermia. Am J Hum Genet 88:344–350. https://doi.org/10.1016/j.ajhg.2011.01.018 - PubMed
  30. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:13033997 [q-bio] - PubMed
  31. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352 - PubMed
  32. Liu G, Shi Q-W, Lu G-X (2010) A newly discovered mutation in PICK1 in a human with globozoospermia. Asian J Androl 12:556–560. https://doi.org/10.1038/aja.2010.47 - PubMed
  33. Lu B, Bishop CE (2003) Mouse GGN1 and GGN3, two germ cell-specific proteins from the single gene Ggn, interact with mouse POG and play a role in spermatogenesis. J Biol Chem 278:16289–16296. https://doi.org/10.1074/jbc.M211023200 - PubMed
  34. Mascarenhas MN, Flaxman SR, Boerma T et al (2012) National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLOS Med 9:e1001356. https://doi.org/10.1371/journal.pmed.1001356 - PubMed
  35. McLaren W, Gil L, Hunt SE et al (2016) The ensembl variant effect predictor. Genome Biol 17:122. https://doi.org/10.1186/s13059-016-0974-4 - PubMed
  36. Modarres P, Tanhaei S, Tavalaee M et al (2016) Assessment of DPY19L2 deletion in familial and non-familial individuals with globozoospermia and DPY19L2 genotyping. Int J Fertil Steril 10:196–207 - PubMed
  37. Modarres P, Tavalaee M, Ghaedi K, Nasr-Esfahani MH (2018) An overview of the globozoospermia as a multigenic identified syndrome. IJFS. https://doi.org/10.22074/ijfs.2019.5561 - PubMed
  38. Oud MS, Okutman Ö, Hendricks LAJ et al (2020) Exome sequencing reveals novel causes as well as new candidate genes for human globozoospermia. Hum Reprod 35:240–252. https://doi.org/10.1093/humrep/dez246 - PubMed
  39. Pierre V, Martinez G, Coutton C et al (2012) Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development 139:2955–2965. https://doi.org/10.1242/dev.077982 - PubMed
  40. Ray PF, Toure A, Metzler-Guillemain C et al (2017) Genetic abnormalities leading to qualitative defects of sperm morphology or function: genetic abnormalities leading to qualitative sperm defects. Clin Genet 91:217–232. https://doi.org/10.1111/cge.12905 - PubMed
  41. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–423. https://doi.org/10.1038/gim.2015.30 - PubMed
  42. Shang Y-L, Zhu F-X, Yan J et al (2019) Novel DPY19L2 variants in globozoospermic patients and the overcoming this male infertility. Asian J Androl 21:183–189. https://doi.org/10.4103/aja.aja_79_18 - PubMed
  43. Singh G (1992) Ultrastructural features of round-headed human spermatozoa. Int J Fertil 37:99–102 - PubMed
  44. Tokuhiro K, Isotani A, Yokota S et al (2009) OAZ-t/OAZ3 is essential for rigid connection of sperm tails to heads in mouse. PLoS Genet 5:e1000712. https://doi.org/10.1371/journal.pgen.1000712 - PubMed
  45. Touré A, Martinez G, Kherraf Z-E et al (2020) The genetic architecture of morphological abnormalities of the sperm tail. Hum Genet. https://doi.org/10.1007/s00439-020-02113-x - PubMed
  46. Yatsenko AN, O’Neil DS, Roy A et al (2012) Association of mutations in the zona pellucida binding protein 1 (ZPBP1) gene with abnormal sperm head morphology in infertile men. Mol Hum Reprod 18:14–21. https://doi.org/10.1093/molehr/gar057 - PubMed
  47. Zhang J, Wang Y, Zhou Y et al (2005) Yeast two-hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell-specific protein GGN1. FEBS Lett 579:559–566. https://doi.org/10.1016/j.febslet.2004.10.112 - PubMed
  48. Zhou Y, Zhao Q, Bishop CE et al (2005) Identification and characterization of a novel testicular germ cell-specific geneGgnbp1. Mol Reprod Dev 70:301–307. https://doi.org/10.1002/mrd.20214 - PubMed
  49. Zhu F, Gong F, Lin G, Lu G (2013) DPY19L2 gene mutations are a major cause of globozoospermia: identification of three novel point mutations. Mol Hum Reprod 19:395–404. https://doi.org/10.1093/molehr/gat018 - PubMed

Substances

MeSH terms

Publication Types

Grant support