Display options
Share it on
Full text links
Atypon Free PMC Article

J Bacteriol. 1988 Jul;170(7):3040-5. doi: 10.1128/jb.170.7.3040-3045.1988.

Construction of a dihydrofolate reductase-deficient mutant of Escherichia coli by gene replacement.

Journal of bacteriology

E E Howell, P G Foster, L M Foster

Affiliations

  1. Agouron Institute, La Jolla, California 92037.

PMID: 2838456 PMCID: PMC211246 DOI: 10.1128/jb.170.7.3040-3045.1988
Free PMC Article

Abstract

The dihydrofolate reductase (fol) gene in Escherichia coli has been deleted and replaced by a selectable marker. Verification of the delta fol::kan strain has been accomplished using genetic and biochemical criteria, including Southern analysis of the chromosomal DNA. The delta fol::kan mutation is stable in E. coli K549 [thyA polA12 (Ts)] and can be successfully transduced to other E. coli strains providing they have mutations in their thymidylate synthetase (thyA) genes. A preliminary investigation of the relationship between fol and thyA gene expression suggests that a Fol- cell (i.e., a dihydrofolate reductase deficiency phenotype) is not viable unless thymidylate synthetase activity is concurrently eliminated. This observation indicates that either the nonproductive accumulation of dihydrofolate or the depletion of tetrahydrofolate cofactor pools is lethal in a Fol- ThyA+ strain. Strains containing the thyA delta fol::kan lesions require the presence of Fol end products for growth, and these lesions typically increase the doubling time of the strain by a factor of 2.5 in rich medium.

Similar articles

Cited by

Zhang HN, Xue JB, Wang AZ, Jiang HW, Merugu SB, Li DW, Tao SC.
Front Immunol. 2021 Dec 03;12:747267. doi: 10.3389/fimmu.2021.747267. eCollection 2021.
PMID: 34925322

Zhang HN, Xue JB, Wang AZ, Jiang HW, Merugu SB, Li DW, Tao SC.
Front Immunol. 2021 Dec 03;12:747267. doi: 10.3389/fimmu.2021.747267. eCollection 2021.
PMID: 34925322

Zhang HN, Xue JB, Wang AZ, Jiang HW, Merugu SB, Li DW, Tao SC.
Front Immunol. 2021 Dec 03;12:747267. doi: 10.3389/fimmu.2021.747267. eCollection 2021.
PMID: 34925322

References

  1. J Bacteriol. 1972 Mar;109(3):971-8 - PubMed
  2. J Bacteriol. 1965 Aug;90:554-5 - PubMed
  3. J Bacteriol. 1973 Apr;114(1):309-22 - PubMed
  4. Mol Gen Genet. 1976 Aug 10;147(1):91-7 - PubMed
  5. J Bacteriol. 1977 Jan;129(1):457-71 - PubMed
  6. J Biol Chem. 1977 Apr 10;252(7):2319-23 - PubMed
  7. Mol Gen Genet. 1977 Mar 7;151(2):215-9 - PubMed
  8. J Bacteriol. 1978 Jun;134(3):1141-56 - PubMed
  9. Mol Gen Genet. 1979 Aug;175(1):31-8 - PubMed
  10. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5924-8 - PubMed
  11. Gene. 1980 May;9(3-4):287-305 - PubMed
  12. J Biol Chem. 1981 Feb 25;256(4):1738-47 - PubMed
  13. J Mol Biol. 1981 Apr 5;147(2):217-26 - PubMed
  14. Cell. 1982 Nov;31(1):43-51 - PubMed
  15. Mol Gen Genet. 1982;187(1):72-8 - PubMed
  16. Cell. 1983 Mar;32(3):773-81 - PubMed
  17. J Mol Biol. 1983 May 5;166(1):1-19 - PubMed
  18. Microbiol Rev. 1983 Jun;47(2):180-230 - PubMed
  19. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4894-8 - PubMed
  20. Science. 1983 Nov 18;222(4625):782-8 - PubMed
  21. Gene. 1984 May;28(2):271-4 - PubMed
  22. J Bacteriol. 1984 Sep;159(3):1034-9 - PubMed
  23. Gene. 1985;33(1):103-19 - PubMed
  24. Biochemistry. 1985 Jan 29;24(3):678-86 - PubMed
  25. J Bacteriol. 1985 Oct;164(1):470-2 - PubMed
  26. Science. 1986 Mar 7;231(4742):1123-8 - PubMed
  27. Biochemistry. 1986 Jul 29;25(15):4194-204 - PubMed
  28. Eur J Biochem. 1987 Feb 2;162(3):473-6 - PubMed
  29. J Bacteriol. 1987 Aug;169(8):3441-9 - PubMed
  30. J Biol Chem. 1956 Jan;218(1):97-106 - PubMed
  31. Anal Biochem. 1972 Apr;46(2):433-7 - PubMed

Substances

MeSH terms

Publication Types

Grant support

LinkOut - more resources