Display options
Share it on

J Biol Chem. 2020 Sep 04;295(36):12755-12771. doi: 10.1074/jbc.RA120.014865. Epub 2020 Jul 21.

Structure of a collagen VI α3 chain VWA domain array: adaptability and functional implications of myopathy causing mutations.

The Journal of biological chemistry

Herimela Solomon-Degefa, Jan M Gebauer, Cy M Jeffries, Carolin D Freiburg, Patrick Meckelburg, Louise E Bird, Ulrich Baumann, Dmitri I Svergun, Raymond J Owens, Jörn M Werner, Elmar Behrmann, Mats Paulsson, Raimund Wagener

Affiliations

  1. Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
  2. Institute of Biochemistry, University of Cologne, Cologne, Germany.
  3. European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany.
  4. The Research Complex at Harwell, Rutherford Appleton Laboratory Harwell, Oxford, United Kingdom.
  5. Structural Biology Division, Wellcome Human Genetics Centre, University of Oxford, Oxford, United Kingdom.
  6. School of Biological Sciences, University of Southampton, Southampton, United Kingdom.
  7. Max Planck Research Group Structural Dynamics of Proteins, Center of Advanced European Studies and Research (caesar), Bonn, Germany.
  8. Center for Molecular Medicine (CMMC), Cologne, Germany.
  9. Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany.
  10. Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany [email protected].

PMID: 32719005 PMCID: PMC7476709 DOI: 10.1074/jbc.RA120.014865

Abstract

Collagen VI is a ubiquitous heterotrimeric protein of the extracellular matrix (ECM) that plays an essential role in the proper maintenance of skeletal muscle. Mutations in collagen VI lead to a spectrum of congenital myopathies, from the mild Bethlem myopathy to the severe Ullrich congenital muscular dystrophy. Collagen VI contains only a short triple helix and consists primarily of von Willebrand factor type A (VWA) domains, protein-protein interaction modules found in a range of ECM proteins. Disease-causing mutations occur commonly in the VWA domains, and the second VWA domain of the α3 chain, the N2 domain, harbors several such mutations. Here, we investigate structure-function relationships of the N2 mutations to shed light on their possible myopathy mechanisms. We determined the X-ray crystal structure of N2, combined with monitoring secretion efficiency in cell culture of selected N2 single-domain mutants, finding that mutations located within the central core of the domain severely affect secretion efficiency. In longer α3 chain constructs, spanning N6-N3, small-angle X-ray scattering demonstrates that the tandem VWA array has a modular architecture and samples multiple conformations in solution. Single-particle EM confirmed the presence of multiple conformations. Structural adaptability appears intrinsic to the VWA domain region of collagen VI α3 and has implications for binding interactions and modulating stiffness within the ECM.

© 2020 Solomon-Degefa et al.

Keywords: VWA domain; collagen; collagen VI; crystallography; electron microscopy (EM); extracellular matrix; extracellular matrix protein; muscular dystrophy; myopathy; single-particle EM; single-particle analysis; small-angle X-ray scattering (SAXS)

Conflict of interest statement

Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.

References

  1. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 - PubMed
  2. J Biol Chem. 2010 Mar 26;285(13):10005-15 - PubMed
  3. J Am Chem Soc. 2007 May 2;129(17):5656-64 - PubMed
  4. EMBO J. 2001 Feb 1;20(3):372-6 - PubMed
  5. J Med Genet. 2005 Sep;42(9):673-85 - PubMed
  6. Biophys J. 2005 Aug;89(2):1237-50 - PubMed
  7. J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674 - PubMed
  8. J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350 - PubMed
  9. J Thromb Haemost. 2009 Dec;7(12):2096-105 - PubMed
  10. J Biol Chem. 2011 Nov 18;286(46):40266-75 - PubMed
  11. Hum Mutat. 2008 Jun;29(6):809-22 - PubMed
  12. J Biol Chem. 2019 Sep 13;294(37):13769-13780 - PubMed
  13. Gene. 2018 Sep 25;672:165-171 - PubMed
  14. J Synchrotron Radiat. 2015 Mar;22(2):273-9 - PubMed
  15. J Med Genet. 2005 Feb;42(2):108-20 - PubMed
  16. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):282-92 - PubMed
  17. J Biol Chem. 2008 Jul 18;283(29):20170-80 - PubMed
  18. J Appl Crystallogr. 2015 Mar 12;48(Pt 2):431-443 - PubMed
  19. J Cell Sci. 2015 Oct 1;128(19):3525-31 - PubMed
  20. Acta Crystallogr D Biol Crystallogr. 2015 May;71(Pt 5):1051-8 - PubMed
  21. Sci Rep. 2015 Jun 01;5:10734 - PubMed
  22. J Comput Chem. 2004 Oct;25(13):1605-12 - PubMed
  23. J Appl Crystallogr. 2017 Jun 26;50(Pt 4):1212-1225 - PubMed
  24. J Biol Chem. 2001 Jun 1;276(22):18947-52 - PubMed
  25. Nature. 1974 Jul 19;250(463):194-9 - PubMed
  26. IUCrJ. 2015 Apr 21;2(Pt 3):352-60 - PubMed
  27. Brain. 1999 Apr;122 ( Pt 4):649-55 - PubMed
  28. J Biol Chem. 1983 Aug 10;258(15):9504-9 - PubMed
  29. J Mol Biol. 2012 Jan 13;415(2):406-18 - PubMed
  30. Neurology. 1996 Mar;46(3):779-82 - PubMed
  31. Biophys J. 1999 Jun;76(6):2879-86 - PubMed
  32. J Vis Exp. 2017 May 16;(123): - PubMed
  33. J Biol Chem. 2016 Mar 4;291(10):5247-58 - PubMed
  34. Nat Methods. 2015 Jan;12(1):7-8 - PubMed
  35. Biochem J. 1983 May 1;211(2):295-302 - PubMed
  36. Comput Phys Commun. 2008 Jan 15;178(2):105-120 - PubMed
  37. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7516-21 - PubMed
  38. FASEB J. 2000 Apr;14(5):761-8 - PubMed
  39. J Synchrotron Radiat. 2018 May 1;25(Pt 3):906-914 - PubMed
  40. Mol Biol Cell. 2002 Oct;13(10):3369-87 - PubMed
  41. Ann Neurol. 2001 Aug;50(2):261-5 - PubMed
  42. Nat Protoc. 2016 Nov;11(11):2122-2153 - PubMed
  43. IUCrJ. 2015 Feb 26;2(Pt 2):207-17 - PubMed
  44. Biochem Soc Trans. 1999 Dec;27(6):835-40 - PubMed
  45. Matrix Biol. 2018 Oct;71-72:348-367 - PubMed
  46. Protein Expr Purif. 2015 Mar;107:20-8 - PubMed
  47. Am J Hum Genet. 2002 Jun;70(6):1446-58 - PubMed
  48. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 - PubMed
  49. Hum Mutat. 2013 Nov;34(11):1558-67 - PubMed
  50. Hum Mutat. 2009 Oct;30(10):1435-48 - PubMed
  51. J Biol Chem. 1999 Jan 29;274(5):3033-41 - PubMed
  52. Acta Biomater. 2017 Apr 1;52:21-32 - PubMed
  53. J Struct Biol. 2005 Oct;152(1):36-51 - PubMed
  54. Eur J Biochem. 1983 Jun 1;133(1):39-46 - PubMed
  55. Nat Methods. 2015 May;12(5):419-22 - PubMed
  56. Biophys J. 2001 Jun;80(6):2946-53 - PubMed
  57. Ann Neurol. 2011 Jan;69(1):206-11 - PubMed
  58. J Mol Biol. 2003 Jul 4;330(2):297-307 - PubMed
  59. Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21 - PubMed
  60. J Biol Chem. 1997 Oct 17;272(42):26522-9 - PubMed
  61. Nat Commun. 2014 Feb 26;5:3392 - PubMed
  62. Ann N Y Acad Sci. 1985;460:25-37 - PubMed
  63. Hum Mol Genet. 1998 May;7(5):807-12 - PubMed
  64. Matrix Biol. 2011 Apr;30(3):195-206 - PubMed
  65. Ann Neurol. 2007 Oct;62(4):390-405 - PubMed
  66. Bioinformatics. 2018 Jun 1;34(11):1944-1946 - PubMed
  67. J Biol Chem. 2001 Jan 5;276(1):187-93 - PubMed
  68. J Biol Chem. 2008 Apr 18;283(16):10658-70 - PubMed
  69. Structure. 2014 Feb 4;22(2):199-208 - PubMed
  70. EMBO J. 1992 Dec;11(12):4281-90 - PubMed
  71. J Cell Biol. 1988 Nov;107(5):1995-2006 - PubMed
  72. Acta Crystallogr D Struct Biol. 2018 Feb 1;74(Pt 2):85-97 - PubMed

Substances

MeSH terms

Publication Types

Grant support