Display options
Share it on

Int J Mol Sci. 2020 May 29;21(11). doi: 10.3390/ijms21113898.

Testing the Effectiveness of .

International journal of molecular sciences

Kyunghee Kim, Hye Mi Jeon, Kyung Chan Choi, Gun Yong Sung

Affiliations

  1. Cooperative Course of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Korea.
  2. Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Korea.
  3. Department of Pathology, Collage of Medicine, Hallym University, Chuncheon 24252, Korea.
  4. Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Korea.

PMID: 32486109 PMCID: PMC7312991 DOI: 10.3390/ijms21113898

Abstract

The in vitro tests in current research employ simple culture methods that fail to mimic the real human tissue. In this study, we report drug testing with a 'pumpless skin-on-a-chip' that mimics the structural and functional responses of human skin. This model is a skin equivalent constituting two layers of the skin, dermis and epidermis, developed using human primary fibroblasts and keratinocytes. Using the gravity flow device system, the medium was rotated at an angle of 15 degrees on both sides so as to circulate through the pumpless skin-on-a-chip microfluidic channel. This pumpless skin-on-a-chip is composed of upper and lower chips, and is manufactured using porous membranes so that medium can be diffused and supplied to the skin equivalent. Drug testing was performed using Curcuma longa leaf extract (CLLE), a natural product cosmetic ingredient, to evaluate the usefulness of the chip and the efficacy of the cosmetic ingredient. It was found that the skin barrier function of the skin epidermis layer is enhanced to exhibit antiaging effects. This result indicates that the pumpless skin-on-a-chip model can be potentially used not only in the cosmetics and pharmaceutical industries but also in clinical applications as an alternative to animal studies.

Keywords: Curcuma longa; antiaging; human-skin equivalents; microphysiological system; pumpless skin-on-a-chip

References

  1. J Dermatol Sci. 2006 Sep;43(3):159-69 - PubMed
  2. Arch Dermatol Res. 1979 Aug;266(1):33-41 - PubMed
  3. Int J Pharm. 2000 Aug 10;203(1-2):211-25 - PubMed
  4. J Invest Dermatol. 1984 May;82(5):453-7 - PubMed
  5. J Natl Cancer Inst. 1991 Jun 5;83(11):757-66 - PubMed
  6. Exp Cell Res. 1997 Jun 15;233(2):330-9 - PubMed
  7. Arch Toxicol. 2008 Apr;82(4):211-36 - PubMed
  8. J Cell Sci. 2009 May 1;122(Pt 9):1285-94 - PubMed
  9. Dermatology. 2000;201(1):15-20 - PubMed
  10. Cancer Res. 1988 Feb 1;48(3):589-601 - PubMed
  11. Oncotarget. 2014 Sep 30;5(18):8402-15 - PubMed
  12. Biology (Basel). 2014 May 30;3(2):345-67 - PubMed
  13. J Invest Dermatol. 2003 Aug;121(2):231-41 - PubMed
  14. J Anat. 1998 Jul;193 ( Pt 1):1-21 - PubMed
  15. J Invest Dermatol. 2004 Jul;123(1):13-22 - PubMed
  16. J Invest Dermatol. 1984 May;82(5):449-52 - PubMed
  17. Eur J Pharm Biopharm. 2005 Jul;60(2):167-78 - PubMed
  18. J Invest Dermatol. 1992 Mar;98(3):343-50 - PubMed
  19. Trends Mol Med. 2008 Jan;14(1):20-7 - PubMed
  20. Biomaterials. 2005 Mar;26(9):979-86 - PubMed
  21. J Cell Sci. 2004 Mar 15;117(Pt 8):1351-63 - PubMed
  22. Free Radic Biol Med. 1995 Aug;19(2):227-50 - PubMed
  23. Mol Cancer Ther. 2004 Jul;3(7):763-72 - PubMed
  24. Int J Pharm. 2017 Mar 15;519(1-2):178-185 - PubMed
  25. J Invest Dermatol. 2000 Oct;115(4):708-13 - PubMed
  26. J Invest Dermatol. 1990 Jun;94(6 Suppl):128S-134S - PubMed
  27. Biomaterials. 2005 Aug;26(23):4847-55 - PubMed
  28. Carcinogenesis. 2007 Aug;28(8):1765-73 - PubMed
  29. J Pathol. 2004 Nov;204(4):355-66 - PubMed
  30. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6906-10 - PubMed
  31. J Biol Chem. 2002 May 24;277(21):19122-30 - PubMed
  32. Bioessays. 2002 Sep;24(9):789-800 - PubMed
  33. J Invest Dermatol. 1980 Sep;75(3):270-4 - PubMed

Substances

MeSH terms

Publication Types

Grant support