Display options
Share it on

Mayo Clin Proc Innov Qual Outcomes. 2020 Jan 08;4(1):50-64. doi: 10.1016/j.mayocpiqo.2019.10.008. eCollection 2020 Feb.

Natriuretic Peptides to Predict Short-Term Mortality in Patients With Sepsis: A Systematic Review and Meta-analysis.

Mayo Clinic proceedings. Innovations, quality & outcomes

Saarwaani Vallabhajosyula, Zhen Wang, M Hassan Murad, Shashaank Vallabhajosyula, Pranathi R Sundaragiri, Kianoush Kashani, Wayne L Miller, Allan S Jaffe, Saraschandra Vallabhajosyula

Affiliations

  1. Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN.
  2. Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN.
  3. Division of Preventive, Occupational, and Aerospace Medicine, Department of Medicine, Mayo Clinic, Rochester, MN.
  4. Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN.
  5. Division of Hospital Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, MN.
  6. Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, MN.
  7. Division of Clinical Core Laboratory Services, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.
  8. Center for Clinical and Translational Science, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN.

PMID: 32055771 PMCID: PMC7011015 DOI: 10.1016/j.mayocpiqo.2019.10.008

Abstract

Data are conflicting regarding the optimal cutoffs of B-type natriuretic peptide (BNP) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) to predict short-term mortality in patients with sepsis. We conducted a comprehensive search of several databases (MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and Scopus) for English-language reports of studies evaluating adult patients with sepsis, severe sepsis, and septic shock with BNP/NT-proBNP levels and short-term mortality (intensive care unit, in-hospital, 28-day, or 30-day) published from January 1, 2000, to September 5, 2017. The average values in survivors and nonsurvivors were used to estimate the receiver operating characteristic curve (ROC) using a parametric regression model. Thirty-five observational studies (3508 patients) were included (median age, 51-75 years; 12%-74% males; cumulative mortality, 34.2%). A BNP of 622 pg/mL had the greatest discrimination for mortality (sensitivity, 0.695 [95% CI, 0.659-0.729]; specificity, 0.907 [95% CI, 0.810-1.003]; area under the ROC, 0.766 [95% CI, 0.734-0.797]). An NT-proBNP of 4000 pg/mL had the greatest discrimination for mortality (sensitivity, 0.728 [95% CI, 0.703-0.753]; specificity, 0.789 [95% CI, 0.710-0.867]; area under the ROC, 0.787 [95% CI, 0.766-0.809]). In prespecified subgroup analyses, identified BNP/NT-proBNP cutoffs had higher discrimination if specimens were obtained 24 hours or less after admission, in patients with severe sepsis/septic shock, in patients enrolled after 2010, and in studies performed in the United States and Europe. There was inconsistent adjustment for renal function. In this hypothesis-generating analysis, BNP and NT-proBNP cutoffs of 622 pg/mL and 4000 pg/mL optimally predicted short-term mortality in patients with sepsis. The applicability of these results is limited by the heterogeneity of included patient populations.

© 2019 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc.

Keywords: AUROC, area under the receiver operating characteristic curve; BNP, B-type natriuretic peptide; NT-proBNP, N-terminal pro-B-type natriuretic peptide; ROC, receiver operating characteristic curve; Sn, sensitivity; Sp, specificity

References

  1. J Surg Res. 2016 Jan;200(1):290-7 - PubMed
  2. Crit Care Med. 2008 Nov;36(11):3030-7 - PubMed
  3. Circulation. 2005 Jul 26;112(4):527-34 - PubMed
  4. Mediators Inflamm. 2014;2014:641039 - PubMed
  5. Int J Med Sci. 2015 Aug 05;12(9):680-8 - PubMed
  6. PLoS Med. 2007 Oct 16;4(10):e297 - PubMed
  7. Am J Emerg Med. 2016 Sep;34(9):1899-900 - PubMed
  8. Acta Cardiol. 2015 Oct;70(5):545-52 - PubMed
  9. Crit Care. 2007;11(2):R37 - PubMed
  10. J Crit Care. 2018 Feb;43:122-127 - PubMed
  11. Crit Care Med. 2015 Jul;43(7):1449-57 - PubMed
  12. Clin Chem Lab Med. 2014 Sep;52(9):1341-6 - PubMed
  13. Cancer. 1950 Jan;3(1):32-5 - PubMed
  14. JAMA. 2016 Feb 23;315(8):801-10 - PubMed
  15. Circulation. 2011 Apr 26;123(16):1788-830 - PubMed
  16. Eur J Intern Med. 2006 Dec;17(8):536-40 - PubMed
  17. Crit Care Med. 2014 Apr;42(4):790-800 - PubMed
  18. J Intensive Care Med. 2018 Nov;33(11):635-644 - PubMed
  19. PLoS One. 2018 Jan 9;13(1):e0190965 - PubMed
  20. Arq Bras Cardiol. 2008 Aug;91(2):107-12 - PubMed
  21. Acad Emerg Med. 2011 Feb;18(2):219-22 - PubMed
  22. J Am Coll Surg. 2011 Jul;213(1):139-46; discussion 146-7 - PubMed
  23. Crit Care Med. 2003 Apr;31(4):1250-6 - PubMed
  24. J Crit Care. 2017 Dec;42:92-100 - PubMed
  25. Chin Med J (Engl). 2012 Jun;125(11):1893-8 - PubMed
  26. Anaesth Intensive Care. 2018 Jan;46(1):13-24 - PubMed
  27. J Am Heart Assoc. 2017 Sep 9;6(9): - PubMed
  28. J Intensive Care Med. 2019 Feb;34(2):87-93 - PubMed
  29. Shock. 2011 Aug;36(2):109-14 - PubMed
  30. J Crit Care. 2015 Apr;30(2):304-9 - PubMed
  31. J Am Heart Assoc. 2018 Sep 18;7(18):e009160 - PubMed
  32. Turk Thorac J. 2015 Jul;16(3):128-132 - PubMed
  33. Ann Intensive Care. 2017 Sep 7;7(1):94 - PubMed
  34. Int J Clin Pract. 2019 Jul;73(7):e13374 - PubMed
  35. Crit Care Med. 2005 May;33(5):1001-7 - PubMed
  36. J Am Coll Cardiol. 2017 Aug 8;70(6):776-803 - PubMed
  37. Rev Bras Ter Intensiva. 2019 Oct 14;31(3):368-378 - PubMed
  38. Biostatistics. 2002 Sep;3(3):421-32 - PubMed
  39. Exp Ther Med. 2016 Jan;11(1):154-156 - PubMed
  40. Crit Care Med. 2004 Mar;32(3):660-5 - PubMed
  41. Clin Chem. 2017 Jan;63(1):351-358 - PubMed
  42. Med Clin (Barc). 2017 Sep 8;149(5):189-195 - PubMed
  43. Crit Care. 2012 May 06;16(3):R74 - PubMed
  44. Intensive Care Med. 2013 Jul;39(7):1181-9 - PubMed
  45. Shock. 2018 Feb;49(2):144-149 - PubMed
  46. Shock. 2006 Aug;26(2):134-9 - PubMed
  47. Ann Intensive Care. 2018 Nov 22;8(1):112 - PubMed
  48. Crit Care Med. 2006 Aug;34(8):2140-4 - PubMed
  49. Crit Care. 2014 Jul 01;18(4):161 - PubMed
  50. Eur Rev Med Pharmacol Sci. 2013 Feb;17(4):517-21 - PubMed
  51. Crit Care. 2014 May 09;18(3):R94 - PubMed
  52. Exp Clin Cardiol. 2008 Winter;13(4):183-8 - PubMed
  53. J Intensive Care Med. 2018 Jan 1;:885066618768180 - PubMed
  54. J Crit Care. 2015 Jun;30(3):654.e9-14 - PubMed
  55. J Intensive Care Med. 2014 Jul-Aug;29(4):229-37 - PubMed
  56. Am J Emerg Med. 2009 Jul;27(6):701-6 - PubMed
  57. Crit Care Med. 2007 Apr;35(4):1019-26 - PubMed
  58. Scand J Trauma Resusc Emerg Med. 2012 Dec 31;20:86 - PubMed
  59. Am J Med Sci. 2015 Apr;349(4):287-91 - PubMed
  60. J Crit Care. 2017 Dec;42:117-122 - PubMed
  61. Anaesthesia. 2005 Jan;60(1):16-21 - PubMed
  62. Tuberk Toraks. 2016 Sep;64(3):191-197 - PubMed
  63. Chest. 2018 Aug;154(2):416-426 - PubMed
  64. Clin Chem. 2017 Jan;63(1):50-58 - PubMed
  65. Crit Care. 2010;14(2):R44 - PubMed
  66. J Crit Care. 2019 Apr;50:201-206 - PubMed
  67. Am J Med Sci. 2016 Jun;351(6):555-62 - PubMed
  68. J Card Fail. 2014 May;20(5):377.e25-31 - PubMed
  69. J Intensive Care Med. 2018 Dec;33(12):680-686 - PubMed
  70. Crit Care Med. 2007 May;35(5):1277-83 - PubMed
  71. Eur Heart J. 2012 Apr;33(7):895-903 - PubMed
  72. Chest. 2005 Jul;128(1):288-95 - PubMed

Publication Types

Grant support