Display options
Share it on

PLoS Comput Biol. 2019 May 31;15(5):e1007042. doi: 10.1371/journal.pcbi.1007042. eCollection 2019 May.

Properties of cardiac conduction in a cell-based computational model.

PLoS computational biology

Karoline Horgmo Jæger, Andrew G Edwards, Andrew McCulloch, Aslak Tveito

Affiliations

  1. Simula Research Laboratory, Oslo, Norway.
  2. Department of Bioengineering, University of California, San Diego, California, United States of America.

PMID: 31150383 PMCID: PMC6561587 DOI: 10.1371/journal.pcbi.1007042

Abstract

The conduction of electrical signals through cardiac tissue is essential for maintaining the function of the heart, and conduction abnormalities are known to potentially lead to life-threatening arrhythmias. The properties of cardiac conduction have therefore been the topic of intense study for decades, but a number of questions related to the mechanisms of conduction still remain unresolved. In this paper, we demonstrate how the so-called EMI model may be used to study some of these open questions. In the EMI model, the extracellular space, the cell membrane, the intracellular space and the cell connections are all represented as separate parts of the computational domain, and the model therefore allows for study of local properties that are hard to represent in the classical homogenized bidomain or monodomain models commonly used to study cardiac conduction. We conclude that a non-uniform sodium channel distribution increases the conduction velocity and decreases the time delays over gap junctions of reduced coupling in the EMI model simulations. We also present a theoretical optimal cell length with respect to conduction velocity and consider the possibility of ephaptic coupling (i.e. cell-to-cell coupling through the extracellular potential) acting as an alternative or supporting mechanism to gap junction coupling. We conclude that for a non-uniform distribution of sodium channels and a sufficiently small intercellular distance, ephaptic coupling can influence the dynamics of the sodium channels and potentially provide cell-to-cell coupling when the gap junction connection is absent.

Conflict of interest statement

ADM is a cofounder of and has an equity interest in Insilicomed, Inc. and Vektor Medical, Inc., and he serves on the scientific advisory boards. Some of his research grants acknowledged here have been

References

  1. Biophys J. 2001 Oct;81(4):2112-21 - PubMed
  2. Circ Res. 1975 May;36(5):654-61 - PubMed
  3. J Clin Invest. 1997 Apr 15;99(8):1991-8 - PubMed
  4. IEEE Trans Biomed Eng. 2007 Apr;54(4):611-20 - PubMed
  5. Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):20935-40 - PubMed
  6. Circ Res. 1982 Feb;50(2):175-91 - PubMed
  7. Circulation. 2004 Mar 2;109(8):1048-55 - PubMed
  8. Comput Cardiol. 2006;33:41-44 - PubMed
  9. Circ Res. 2002 Dec 13;91(12):1176-82 - PubMed
  10. Front Physiol. 2015 Jan 06;5:511 - PubMed
  11. J Math Biol. 2008 Aug;57(2):265-84 - PubMed
  12. Biophys J. 2008 Oct;95(8):3724-37 - PubMed
  13. Circ Res. 1982 Feb;50(2):192-200 - PubMed
  14. J Physiol. 1978 Oct;283:263-82 - PubMed
  15. Europace. 2007 Nov;9 Suppl 6:vi20-8 - PubMed
  16. Circ Arrhythm Electrophysiol. 2013 Dec;6(6):1208-14 - PubMed
  17. Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6463-8 - PubMed
  18. IEEE Trans Biomed Eng. 1992 Dec;39(12):1232-43 - PubMed
  19. J Electrocardiol. 2003;36 Suppl:69-74 - PubMed
  20. Pflugers Arch. 2015 Oct;467(10):2093-105 - PubMed
  21. Cardiovasc Res. 2001 Sep;51(4):681-90 - PubMed
  22. Circ Res. 1994 Jun;74(6):1071-96 - PubMed
  23. Am J Physiol Heart Circ Physiol. 2014 May;306(9):H1341-52 - PubMed
  24. Circ Res. 2003 Feb 7;92(2):125-6 - PubMed
  25. J Physiol. 1986 Jan;370:267-84 - PubMed
  26. Biophys J. 2010 Nov 3;99(9):2821-30 - PubMed
  27. Biophys J. 2016 Mar 29;110(6):1322-33 - PubMed
  28. Circ Arrhythm Electrophysiol. 2017 Sep;10(9): - PubMed
  29. Biophys J. 1994 Jun;66(6):1768-76 - PubMed
  30. Heart Rhythm. 2004 Oct;1(4):500-15 - PubMed
  31. J Mol Cell Cardiol. 1975 Mar;7(3):163-74 - PubMed
  32. IEEE Eng Med Biol Mag. 2002 Jan-Feb;21(1):77-89 - PubMed
  33. Int J Cardiol Heart Vasc. 2015 Dec 07;9:75-82 - PubMed
  34. Circ Res. 1995 Mar;76(3):366-80 - PubMed
  35. J Mol Cell Cardiol. 2010 Jan;48(1):112-21 - PubMed
  36. J Mol Cell Cardiol. 2013 Nov;64:69-78 - PubMed
  37. J Physiol. 2018 Feb 15;596(4):563-589 - PubMed
  38. Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1573-89 - PubMed
  39. Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1378-403 - PubMed
  40. Circ Res. 1998 Nov 30;83(11):1144-64 - PubMed
  41. Am J Physiol Heart Circ Physiol. 2010 Apr;298(4):H1209-18 - PubMed
  42. Am J Physiol Heart Circ Physiol. 2014 Mar 1;306(5):H619-27 - PubMed
  43. J Physiol. 1977 Jun;268(1):177-210 - PubMed
  44. Mol Biol Cell. 2016 Nov 7;27(22):3583-3590 - PubMed
  45. Biol Cell. 2002 Nov;94(7-8):501-10 - PubMed
  46. Circ Res. 2001 Jun 8;88(11):1196-202 - PubMed
  47. J Cardiovasc Electrophysiol. 1997 Aug;8(8):887-94 - PubMed
  48. Biochim Biophys Acta. 2004 Mar 23;1662(1-2):42-60 - PubMed
  49. J Electrocardiol. 2001;34 Suppl:69-76 - PubMed
  50. IEEE Trans Biomed Eng. 2013 Feb;60(2):576-82 - PubMed
  51. Biophys J. 2011 Feb 2;100(3):554-563 - PubMed
  52. Circ Res. 1997 Nov;81(5):727-41 - PubMed
  53. Cardiovasc Res. 2004 May 1;62(2):309-22 - PubMed
  54. Circ Res. 2000 Feb 18;86(3):302-11 - PubMed
  55. Am J Physiol Heart Circ Physiol. 2012 Jan 1;302(1):H278-86 - PubMed
  56. Am J Physiol. 1985 Nov;249(5 Pt 1):C447-55 - PubMed
  57. J Physiol. 1970 Nov;210(4):1041-54 - PubMed
  58. Front Comput Neurosci. 2017 Apr 24;11:27 - PubMed
  59. Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1113-23 - PubMed
  60. Biomed Res Int. 2015;2015:936295 - PubMed
  61. Circulation. 1998 Feb 24;97(7):686-91 - PubMed
  62. Europace. 2012 Nov;14 Suppl 5:v3-v9 - PubMed
  63. Circ Res. 1981 Jan;48(1):39-54 - PubMed
  64. Am J Physiol Heart Circ Physiol. 2000 Apr;278(4):H1019-29 - PubMed
  65. Biophys J. 2014 Feb 18;106(4):925-31 - PubMed
  66. J Cardiovasc Electrophysiol. 1999 Oct;10(10):1361-75 - PubMed
  67. Biophys J. 2012 Jun 6;102(11):2471-80 - PubMed
  68. J Neural Eng. 2013 Apr;10(2):026019 - PubMed
  69. Ann Biomed Eng. 2010 Apr;38(4):1399-414 - PubMed
  70. Circ Res. 2004 Jul 23;95(2):170-8 - PubMed
  71. J Theor Biol. 1977 Jan 7;64(1):71-96 - PubMed
  72. Biophys J. 2014 Feb 18;106(4):774-5 - PubMed
  73. Chaos. 1998 Mar;8(1):20-47 - PubMed
  74. Front Physiol. 2014 Nov 03;5:424 - PubMed
  75. Biophys J. 2001 Jul;81(1):137-52 - PubMed
  76. Ann Biomed Eng. 2005 Dec;33(12):1743-51 - PubMed
  77. Ann Biomed Eng. 2010 Apr;38(4):1415-25 - PubMed
  78. Cardiovasc Res. 2014 Nov 1;104(2):371-81 - PubMed
  79. Am J Physiol Heart Circ Physiol. 2006 Sep;291(3):H1088-100 - PubMed
  80. Chaos. 2017 Sep;27(9):093908 - PubMed
  81. Circ Res. 1990 Jun;66(6):1461-73 - PubMed
  82. Cardiovasc Res. 1992 Aug;26(8):740-50 - PubMed
  83. Circ Res. 2003 Jun 13;92(11):1209-16 - PubMed
  84. Prog Biophys Mol Biol. 2012 Oct-Nov;110(2-3):295-304 - PubMed
  85. J Physiol. 1998 Jul 1;510 ( Pt 1):177-89 - PubMed
  86. Circ Res. 2002 Nov 29;91(11):985-7 - PubMed

Substances

MeSH terms

Publication Types

Grant support