Display options
Share it on

PLoS Genet. 2019 May 20;15(5):e1008156. doi: 10.1371/journal.pgen.1008156. eCollection 2019 May.

Transcriptomic basis and evolution of the ant nurse-larval social interactome.

PLoS genetics

Michael R Warner, Alexander S Mikheyev, Timothy A Linksvayer

Affiliations

  1. Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
  2. Ecology and Evolution Unit, Okinawa Institute of Science and Technology, Onna, Okinawa, Japan.
  3. Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.

PMID: 31107868 PMCID: PMC6544314 DOI: 10.1371/journal.pgen.1008156

Abstract

Development is often strongly regulated by interactions among close relatives, but the underlying molecular mechanisms are largely unknown. In eusocial insects, interactions between caregiving worker nurses and larvae regulate larval development and resultant adult phenotypes. Here, we begin to characterize the social interactome regulating ant larval development by collecting and sequencing the transcriptomes of interacting nurses and larvae across time. We find that the majority of nurse and larval transcriptomes exhibit parallel expression dynamics across larval development. We leverage this widespread nurse-larva gene co-expression to infer putative social gene regulatory networks acting between nurses and larvae. Genes with the strongest inferred social effects tend to be peripheral elements of within-tissue regulatory networks and are often known to encode secreted proteins. This includes interesting candidates such as the nurse-expressed giant-lens, which may influence larval epidermal growth factor signaling, a pathway known to influence various aspects of insect development. Finally, we find that genes with the strongest signatures of social regulation tend to experience relaxed selective constraint and are evolutionarily young. Overall, our study provides a first glimpse into the molecular and evolutionary features of the social mechanisms that regulate all aspects of social life.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Nature. 2010 Dec 9;468(7325):815-8 - PubMed
  2. Elife. 2016 Nov 29;5: - PubMed
  3. Front Microbiol. 2012 Mar 12;3:85 - PubMed
  4. Tissue Cell. 1974;6(4):669-93 - PubMed
  5. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2614-9 - PubMed
  6. Mol Biol Evol. 2015 May;32(5):1221-31 - PubMed
  7. J Chem Ecol. 2005 Nov;31(11):2731-45 - PubMed
  8. Ecol Evol. 2015 Oct 08;5(21):4795-807 - PubMed
  9. Genome Biol. 2016 Mar 07;17:43 - PubMed
  10. Trends Genet. 2007 Jul;23(7):334-41 - PubMed
  11. Trends Ecol Evol. 1999 Sep;14(9):343-348 - PubMed
  12. J Exp Zool B Mol Dev Evol. 2012 May;318(3):159-69 - PubMed
  13. Bioinformatics. 2005 Jun;21 Suppl 1:i159-68 - PubMed
  14. Nat Commun. 2015 Mar 11;6:6513 - PubMed
  15. Philos Trans R Soc Lond B Biol Sci. 2011 Jul 27;366(1574):2155-70 - PubMed
  16. Nucleic Acids Res. 2017 Jan 4;45(D1):D663-D671 - PubMed
  17. Mol Ecol. 2014 Feb;23(3):660-72 - PubMed
  18. BMC Genomics. 2011 Mar 29;12:164 - PubMed
  19. Evolution. 1997 Oct;51(5):1352-1362 - PubMed
  20. Curr Biol. 2007 Aug 21;17(16):R648-50 - PubMed
  21. Nature. 2011 May 26;473(7348):478-83 - PubMed
  22. Mol Biol Evol. 2017 Jul 1;34(7):1780-1787 - PubMed
  23. Elife. 2017 May 02;6: - PubMed
  24. Evolution. 2010 Sep;64(9):2558-74 - PubMed
  25. Q Rev Biol. 2010 Mar;85(1):57-79 - PubMed
  26. Mol Ecol. 2019 Feb;28(3):658-670 - PubMed
  27. PLoS One. 2007 Oct 03;2(10):e994 - PubMed
  28. Anim Behav. 1999 Aug;58(2):267-272 - PubMed
  29. Front Microbiol. 2015 Feb 06;6:65 - PubMed
  30. Sci Rep. 2018 Dec 13;8(1):17830 - PubMed
  31. Genetics. 2006 Jun;173(2):821-37 - PubMed
  32. Nature. 1995 Aug 24;376(6542):699-702 - PubMed
  33. Trends Ecol Evol. 1998 Feb 1;13(2):64-9 - PubMed
  34. Trends Genet. 2007 Nov;23(11):533-9 - PubMed
  35. Nat Rev Microbiol. 2012 Sep;10(9):618-30 - PubMed
  36. J Anim Sci. 2006 Apr;84(4):800-6 - PubMed
  37. Genetics. 1991 Mar;127(3):565-82 - PubMed
  38. Science. 2018 Nov 30;362(6418):1052-1055 - PubMed
  39. Proc Biol Sci. 2010 Jul 22;277(1691):2139-48 - PubMed
  40. Am Nat. 1999 Mar;153(3):254-266 - PubMed
  41. Nat Commun. 2014;5:3363 - PubMed
  42. Front Genet. 2014 Aug 29;5:297 - PubMed
  43. BMC Bioinformatics. 2011 Aug 04;12:323 - PubMed
  44. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  45. J Evol Biol. 2011 Sep;24(9):1939-48 - PubMed
  46. PLoS One. 2010 Sep 28;5(9): - PubMed
  47. Science. 2002 Jul 12;297(5579):249-52 - PubMed
  48. Am Nat. 2009 Mar;173(3):E99-E107 - PubMed
  49. Integr Comp Biol. 2012 Jul;52(1):16-30 - PubMed
  50. Evolution. 2009 Jul;63(7):1685-96 - PubMed
  51. Mol Biol Evol. 2016 May;33(5):1245-56 - PubMed
  52. Evolution. 2006 Dec;60(12):2552-61 - PubMed
  53. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15936-41 - PubMed
  54. Sci Rep. 2018 Feb 21;8(1):3384 - PubMed
  55. J Exp Biol. 2011 Dec 1;214(Pt 23):3977-84 - PubMed
  56. Nat Methods. 2012 Jul 15;9(8):796-804 - PubMed
  57. Elife. 2015 Jan 26;4:e04775 - PubMed
  58. Nature. 2016 Jan 28;529(7587):496-501 - PubMed
  59. BMC Bioinformatics. 2006 Apr 05;7:191 - PubMed
  60. J Theor Biol. 1964 Jul;7(1):1-16 - PubMed
  61. Naturwissenschaften. 2003 Apr;90(4):189-92 - PubMed
  62. J Exp Biol. 2017 Jan 1;220(Pt 1):53-62 - PubMed
  63. Nature. 2012 Oct 4;490(7418):98-101 - PubMed
  64. Exp Cell Res. 2003 Mar 10;284(1):140-9 - PubMed
  65. J Anim Sci. 2010 Sep;88(9):2883-92 - PubMed

MeSH terms

Publication Types