Display options
Share it on
Full text links
HighWire Free PMC Article

Proc Natl Acad Sci U S A. 1988 Aug;85(15):5439-43. doi: 10.1073/pnas.85.15.5439.

Translation initiation controls the relative rates of expression of the bacteriophage lambda late genes.

Proceedings of the National Academy of Sciences of the United States of America

L L Sampson, R W Hendrix, W M Huang, S R Casjens

Affiliations

  1. Department of Cellular, Viral and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132.

PMID: 2969591 PMCID: PMC281772 DOI: 10.1073/pnas.85.15.5439
Free PMC Article

Abstract

The late operon of bacteriophage lambda contains the genes encoding the morphogenetic proteins of the phage. These genes are transcribed equally from the single late promoter. Although the functional half-lives of the mRNA for the various genes of this operon vary less than 2-fold, their relative rates of expression have been shown to vary by nearly 1000-fold. This variation could result from differing rates of translation initiation, from overlapping upstream translation, or from differential elongation rates due to the presence of codons for which the corresponding tRNAs are rare. To distinguish between these possibilities, we have cloned sequences surrounding the initiator codons of several of these genes and measured their ability to drive synthesis of hybrid lambda-beta-galactosidase proteins. The rates of expression of the hybrid genes thus produced correlate very well with the natural rates of expression of the corresponding phage genes, suggesting that the rate of initiation of translation controls the relative expression rates of these genes.

Cited by

References

  1. J Mol Biol. 1970 Feb 14;47(3):545-56 - PubMed
  2. J Virol. 1983 Feb;45(2):864-7 - PubMed
  3. Virology. 1972 Jul;49(1):257-67 - PubMed
  4. J Mol Biol. 1973 May 5;76(1):45-60 - PubMed
  5. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342-6 - PubMed
  6. J Mol Biol. 1974 May 5;85(1):163-75 - PubMed
  7. Nature. 1974 Jun 7;249(457):561-3 - PubMed
  8. Nature. 1974 Sep 13;251(5471):112-9 - PubMed
  9. Nature. 1975 Feb 20;253(5493):647-50 - PubMed
  10. J Mol Biol. 1974 Nov 25;90(1):1-20 - PubMed
  11. J Bacteriol. 1977 Oct;132(1):349-51 - PubMed
  12. J Bacteriol. 1980 Aug;143(2):971-80 - PubMed
  13. J Mol Biol. 1980 Oct 25;143(2):161-78 - PubMed
  14. Nucleic Acids Res. 1981 Jul 10;9(13):2989-98 - PubMed
  15. Annu Rev Microbiol. 1981;35:365-403 - PubMed
  16. Plasmid. 1980 Jan;3(1):88-91 - PubMed
  17. J Mol Biol. 1982 Dec 25;162(4):729-73 - PubMed
  18. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):45-52 - PubMed
  19. Mol Cell Biol. 1984 Mar;4(3):415-23 - PubMed
  20. Nucleic Acids Res. 1984 Sep 11;12(17):6663-71 - PubMed
  21. EMBO J. 1984 Dec 1;3(12):2895-8 - PubMed
  22. Nucleic Acids Res. 1985 Jun 11;13(11):4113-23 - PubMed
  23. Virology. 1985 Dec;147(2):431-40 - PubMed
  24. Eur J Biochem. 1986 Jan 2;154(1):193-6 - PubMed
  25. Cell. 1986 Mar 14;44(5):711-8 - PubMed
  26. J Biol Chem. 1986 Mar 25;261(9):4229-38 - PubMed
  27. Gene. 1986;43(3):281-6 - PubMed
  28. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8127-31 - PubMed
  29. Nucleic Acids Res. 1987 Jan 12;15(1):119-40 - PubMed
  30. J Mol Biol. 1987 Jan 20;193(2):413-7 - PubMed
  31. Science. 1988 Feb 26;239(4843):1005-12 - PubMed
  32. J Mol Biol. 1981 Sep 25;151(3):389-409 - PubMed
  33. Anal Biochem. 1982 Jan 1;119(1):142-7 - PubMed
  34. Eur J Biochem. 1982 Apr 1;123(2):253-60 - PubMed
  35. Gene. 1982 Jun;18(3):199-209 - PubMed
  36. Nucleic Acids Res. 1982 Nov 25;10(22):7055-74 - PubMed
  37. Cell. 1982 Nov;31(1):227-35 - PubMed
  38. Proc Natl Acad Sci U S A. 1983 Feb;80(3):687-91 - PubMed
  39. Virology. 1972 Jun;48(3):785-823 - PubMed

Substances

MeSH terms

Publication Types

Grant support

LinkOut - more resources