Display options
Share it on

Eur Radiol. 2019 Sep;29(9):4593-4602. doi: 10.1007/s00330-018-5951-8. Epub 2019 Feb 22.

Clinical significance of evaluating coronary atherosclerosis in adult patients with hypertrophic cardiomyopathy who have chest pain.

European radiology

Yoon Joo Shin, Jae Hwan Lee, Jin Young Yoo, Jeong A Kim, Yongho Jeon, Yeonyee E Yoon, Eun Ju Chun

Affiliations

  1. Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 13620, South Korea.
  2. Department of Radiology, National Cancer Center Hospital, Goyang, Gyeonggi-do, South Korea.
  3. Department of Radiology, Chungbuk National University Hospital, Cheongju, South Korea.
  4. Department of Radiology, Inje University Ilsan Paik Hospital, Goyang, Gyeonggi-do, South Korea.
  5. Department of Applied Statistics, College of Commerce and Economics, Yonsei University, Seoul, South Korea.
  6. Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, South Korea.
  7. Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam, Gyeonggi-do, 13620, South Korea. [email protected].

PMID: 30796567 DOI: 10.1007/s00330-018-5951-8

Abstract

OBJECTIVE: Chest pain is a common symptom in patients with hypertrophic cardiomyopathy (HCM), causing difficulty determining whether there is coexistent coronary artery disease (CAD). We investigated whether coronary computed tomography angiography (CCTA) can assess the prevalence and clinical significance of CAD in adult patients with HCM showing chest pain through longitudinal follow-up.

METHODS: In 238 adult patients with HCM, who underwent CCTA for chest pain, we analyzed the degree of stenosis and adverse plaque characteristics (APCs) as CCTA variables. Three prediction models for adverse cardiovascular events (ACEs: all-cause mortality, myocardial infarction, unstable angina, heart failure, implantable cardioverter-defibrillator implantation, and stroke) were assessed using the combination of clinical risk factors, echocardiographic parameters, and CCTA variables.

RESULTS: The prevalence of obstructive CAD (≥ 50% in luminal stenosis) and APC was 14.7% and 18.9%, respectively. During the follow-up period (median, 37 months; range, 2-108 months), there were 31 occurrences of ACEs (13.0%). Using multivariate Cox regression analysis, age, atrial fibrillation, low ejection fraction, obstructive CAD, and APCs were associated with ACEs (all p < 0.05). Among the prediction models for ACEs, the area under the curve (AUC) was higher (AUC = 0.92) when CCTA variables were added to the clinical (AUC = 0.84) and echocardiographic factors (AUC = 0.88) (p < 0.001).

CONCLUSIONS: Using CCTA, about 20% of symptomatic HCM patients were associated with clinically significant atherosclerosis. Adding these CCTA variables to the clinical and echocardiographic variables may increase the predictions of ACEs; therefore, evaluating coronary atherosclerosis using CCTA may be helpful for symptomatic HCM patients.

KEY POINTS: • Chest pain in adult patients with hypertrophic cardiomyopathy (HCM) remains challenging to distinguish from coronary artery disease. • Coronary computed tomography angiography (CCTA) can assess the severity and characteristics of coronary atherosclerosis in symptomatic HCM patients. • Adding CCTA variables to clinical and echocardiographic factors may increase the predictions of adverse cardiac events in HCM patients, and thus evaluating coronary atherosclerosis using CCTA may be helpful for HCM patients with chest pain.

Keywords: Cardiomyopathy, hypertrophic; Chest pain; Computed tomography angiography; Coronary artery disease

References

  1. Arterioscler Thromb Vasc Biol. 2000 May;20(5):1262-75 - PubMed
  2. J Am Coll Cardiol. 2001 Apr;37(5):1478-92 - PubMed
  3. JAMA. 2002 Mar 13;287(10):1308-20 - PubMed
  4. J Am Coll Cardiol. 2003 Sep 3;42(5):882-8 - PubMed
  5. J Am Coll Cardiol. 2003 Sep 3;42(5):889-94 - PubMed
  6. Circulation. 2003 Nov 11;108(19):2342-8 - PubMed
  7. Heart. 2004 Apr;90(4):380 - PubMed
  8. N Engl J Med. 2004 Mar 25;350(13):1320-7 - PubMed
  9. Tex Heart Inst J. 1985 Jun;12(2):147-51 - PubMed
  10. Eur Heart J. 2005 Jun;26(12):1159-68 - PubMed
  11. Am J Cardiol. 1992 Aug 15;70(4):499-501 - PubMed
  12. J Am Coll Cardiol. 2009 Jun 30;54(1):49-57 - PubMed
  13. Am Heart J. 1991 Jan;121(1 Pt 2):293-8 - PubMed
  14. Radiographics. 2010 Sep;30(5):1309-28 - PubMed
  15. JACC Cardiovasc Imaging. 2011 May;4(5):537-48 - PubMed
  16. JACC Cardiovasc Imaging. 2012 Dec;5(12):1243-52 - PubMed
  17. Circulation. 2013 Feb 5;127(5):585-93 - PubMed
  18. J Am Coll Cardiol. 2014 Aug 19;64(7):684-92 - PubMed
  19. Eur Heart J. 2014 Oct 14;35(39):2733-79 - PubMed
  20. Eur Heart J Cardiovasc Imaging. 2015 Apr;16(4):373-9 - PubMed
  21. Eur Radiol. 2015 Mar;25(3):767-75 - PubMed
  22. J Cardiovasc Comput Tomogr. 2014 Nov-Dec;8(6):429-37 - PubMed
  23. N Engl J Med. 1989 Mar 23;320(12):749-55 - PubMed
  24. Eur Radiol. 2017 Mar;27(3):1125-1135 - PubMed
  25. Circulation. 1989 Nov;80(5):1489-92 - PubMed
  26. JACC Cardiovasc Imaging. 2017 Nov;10(11):1374-1386 - PubMed
  27. J Cardiovasc Magn Reson. 2018 Feb 7;20(1):9 - PubMed
  28. Circulation. 1987 Dec;76(6):1214-23 - PubMed
  29. N Engl J Med. 1987 Mar 26;316(13):780-9 - PubMed
  30. J Am Coll Cardiol. 1986 Sep;8(3):545-57 - PubMed
  31. Postgrad Med J. 1986 Jun;62(728):567-70 - PubMed
  32. Circulation. 1985 Feb;71(2):234-43 - PubMed
  33. Br Heart J. 1983 Dec;50(6):530-3 - PubMed
  34. J Cardiogr. 1983 Dec;13(4):1041-9 - PubMed
  35. Circulation. 1982 Jun;65(7):1388-94 - PubMed
  36. Am J Cardiol. 1993 Oct 15;72(12):939-43 - PubMed
  37. Lancet. 1996 May 25;347(9013):1422-3 - PubMed
  38. Heart. 1997 Mar;77(3):280-2 - PubMed
  39. J Am Coll Cardiol. 1997 Aug;30(2):474-80 - PubMed

MeSH terms

Publication Types

Grant support