Display options
Share it on

Intensive Care Med Exp. 2018 Sep 05;6(1):31. doi: 10.1186/s40635-018-0197-y.

Time course of liver mitochondrial function and intrinsic changes in oxidative phosphorylation in a rat model of sepsis.

Intensive care medicine experimental

Pierre Eyenga, Damien Roussel, Jerome Morel, Benjamin Rey, Caroline Romestaing, Virginie Gueguen-Chaignon, Shey-Shing Sheu, Jean Paul Viale

Affiliations

  1. Service de réanimation, centre hospitalier de Sens, 1 avenue pierre de Coubertin, 89100, Sens, France. [email protected].
  2. Université Claude Bernard Lyon, 69008, Lyon, France. [email protected].
  3. CNRS, UMR 5023, Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France.
  4. Service de réanimation chirurgicale, CHU de Saint Etienne, 42000, Saint Etienne, France.
  5. CNRS, UMR 5558, Laboratoire de biométrie et de biologie évolutive, Université Claude Bernard Lyon 1, 69622, Villeurbanne, France.
  6. Protein Science Facility, Institut de Biologie et Chimie des Protéines, CNRS Université Claude Bernard Lyon 1, 69007, Lyon, France.
  7. Center for Translational Medecine, Thomas Jefferson University, Philadelphia, USA.
  8. Université Claude Bernard Lyon, 69008, Lyon, France.

PMID: 30187255 PMCID: PMC6125261 DOI: 10.1186/s40635-018-0197-y

Abstract

BACKGROUND: Tissue ATP depletion and oxidative stress have been associated with the severe outcomes of septic shock. One of the compensatory mechanisms to alleviate the sepsis-induced mitochondrial dysfunction could be the increase in oxidative phosphorylation efficiency (ATP/O). We propose to study liver mitochondrial function and oxidative stress and the regulatory mechanism of mitochondrial oxidative phosphorylation efficiency in an animal model of sepsis.

METHODS: We induced sepsis in rats by cecal ligation and perforation (CLP). Six, 24, or 36 h following CLP, we measured liver mitochondrial respiration, cytochrome c oxidase activity, and membrane permeability. We determine oxidative phosphorylation efficiency, by measuring ATP synthesis related to oxygen consumption at various exogenous ADP concentrations. Finally, we measured radical oxygen species (ROS) generation by liver mitochondria and mRNA concentrations of UCP2, biogenesis factors, and cytokines at the same end points.

RESULTS: CLP rats presented hypotension, lactic acidosis, liver cytolysis, and upregulation of proinflammatory cytokines mRNA as compared to controls. Liver mitochondria showed a decrease in ATP synthesis and oxygen consumption at 24 h following CLP. A marked uncoupling of oxidative phosphorylation appeared 36 h following CLP and was associated with a decrease in cytochrome c oxidase activity and content and ATP synthase subunit β content (slip mechanism) and an increase in mitochondrial oligomycin-insensitive respiration, but no change in mitochondrial inner membrane permeability (no leak). Upregulation of UCP2 mRNA resulted in a decrease in mitochondrial ROS generation 24 h after the onset of CLP, whereas ROS over-generation associated with slip at cytochrome c oxidase observed at 36 h was concomitant with a decrease in UCP2 mRNA expression.

CONCLUSIONS: Despite a compensatory increase in mitochondrial biogenesis factors, liver mitochondrial functions remain altered after CLP. This suggests that the functional compensatory mechanisms reported in the present study (slip at cytochrome c oxidase and biogenesis factors) were not strong enough to increase oxidative phosphorylation efficiency and failed to limit liver mitochondrial ROS over-generation. These data suggest that treatments based on cytochrome c infusion could have a role in mitochondrial dysfunction and/or ROS generation associated with sepsis.

Keywords: ATP synthase; Biogenesis factors; Cytochrome c oxidase; Mitochondria; Oxidative phosphorylation; Oxidative stress; Proinflammatory cytokines; Severe sepsis; Uncoupling protein 2

References

  1. Am J Physiol Cell Physiol. 2007 Jan;292(1):C52-8 - PubMed
  2. Am J Physiol Regul Integr Comp Physiol. 2004 Mar;286(3):R491-7 - PubMed
  3. Am J Physiol. 1998 May;274(5 Pt 2):R1376-83 - PubMed
  4. Crit Care Med. 2012 Apr;40(4):1221-8 - PubMed
  5. Arch Surg. 1975 Jul;110(7):779-81 - PubMed
  6. Crit Care Clin. 2000 Apr;16(2):337-52, vii - PubMed
  7. Crit Care. 2002 Dec;6(6):491-9 - PubMed
  8. Biosci Rep. 1997 Feb;17(1):23-31 - PubMed
  9. Biochem Biophys Res Commun. 1998 Oct 9;251(1):313-9 - PubMed
  10. Biochemistry. 1996 Aug 20;35(33):10800-6 - PubMed
  11. Crit Care Med. 2008 Jun;36(6):1925-32 - PubMed
  12. Chin J Traumatol. 2003 Oct;6(5):292-6 - PubMed
  13. Aging Cell. 2010 Dec;9(6):1032-46 - PubMed
  14. Shock. 2008 May;29(5):612-6 - PubMed
  15. Arch Surg. 1997 Apr;132(4):364-9; discussion 369-70 - PubMed
  16. Crit Care Med. 2007 Sep;35(9):2120-7 - PubMed
  17. Lancet. 2002 Jul 20;360(9328):219-23 - PubMed
  18. Am J Physiol. 1987 Mar;252(3 Pt 1):E365-9 - PubMed
  19. Am J Respir Crit Care Med. 2007 Oct 15;176(8):768-77 - PubMed
  20. Int J Obes (Lond). 2008 Apr;32(4):629-38 - PubMed
  21. FEBS Lett. 2000 Feb 25;468(2-3):239-42 - PubMed
  22. Am J Physiol. 1996 May;270(5 Pt 2):R927-38 - PubMed
  23. Shock. 2015 Mar;43(3):292-7 - PubMed
  24. Nature. 1961 Jul 8;191:144-8 - PubMed
  25. Int J Mol Sci. 2015 Aug 03;16(8):17763-78 - PubMed
  26. Nitric Oxide. 2010 Nov 1;23(3):194-8 - PubMed
  27. Crit Care Med. 2011 May;39(5):1056-63 - PubMed
  28. Sci Transl Med. 2013 Jul 24;5(195):195ra95 - PubMed
  29. Shock. 2003 Jun;19(6):570-6 - PubMed
  30. J Appl Physiol (1985). 2005 Sep;99(3):1120-6 - PubMed
  31. Crit Care Med. 2001 Jul;29(7):1303-10 - PubMed
  32. Crit Care. 2011;15(5):230 - PubMed
  33. Arch Surg. 1980 Feb;115(2):136-40 - PubMed
  34. Biochim Biophys Acta. 2003 Jun 5;1604(2):77-94 - PubMed
  35. Mitochondrion. 2004 Sep;4(5-6):729-41 - PubMed
  36. J Exp Biol. 2010 Jul 15;213(Pt 14):2476-82 - PubMed
  37. Physiology (Bethesda). 2011 Jun;26(3):192-205 - PubMed
  38. Arch Surg. 1991 Feb;126(2):219-24 - PubMed
  39. Biochem Soc Trans. 2005 Nov;33(Pt 5):897-904 - PubMed
  40. N Engl J Med. 2001 Nov 8;345(19):1368-77 - PubMed
  41. Crit Care Med. 2007 Sep;35(9 Suppl):S468-75 - PubMed
  42. Exp Ther Med. 2018 Apr;15(4):3967-3975 - PubMed
  43. Mitochondrion. 2008 Jun;8(3):211-8 - PubMed
  44. Am J Physiol Endocrinol Metab. 2008 Jan;294(1):E110-9 - PubMed
  45. J Physiol Biochem. 2014 Jun;70(2):285-96 - PubMed
  46. J Biol Chem. 2008 Jul 25;283(30):21134-44 - PubMed
  47. Biochem J. 1997 Jul 15;325 ( Pt 2):519-25 - PubMed
  48. J Biol Chem. 1990 Sep 25;265(27):16330-6 - PubMed
  49. Crit Care Med. 2007 Sep;35(9 Suppl):S441-8 - PubMed
  50. Biochim Biophys Acta. 1994 Dec 30;1188(3):405-16 - PubMed

Publication Types