Display options
Share it on

Dig Dis Sci. 1989 Dec;34(12):5S-15S. doi: 10.1007/BF01536656.

Hepatocellular bile acid transport and ursodeoxycholic acid hypercholeresis.

Digestive diseases and sciences

B F Scharschmidt, J R Lake

Affiliations

  1. Department of Medicine, University of California, San Francisco 94143.

PMID: 2689116 DOI: 10.1007/BF01536656

Abstract

This review focuses on mechanisms of bile acid transport across the basolateral and canalicular hepatocyte plasma membranes and on ursodeoxycholic acid (UDCA) hypercholeresis and biotransformation. Conjugated trihydroxy bile acids enter hepatocytes via a sodium-coupled mechanism localized to the basolateral membrane, which is saturable, concentrative, inhibited by other bile acids as well as by furosemide and bumetanide, and exhibits developmental changes in rats and probably also in humans. The stoichiometry of sodium-coupled bile acid uptake has been controversial. Hydrophobic, unconjugated dihydroxy and monohydroxy bile acids, including UDCA, enter hepatocytes more rapidly than does taurocholate, and their uptake is largely nonsaturable and sodium independent. A hydroxyl-exchange mechanism that mediates the uptake of cholic acid has also been reported, but its existence is controversial. Current evidence suggests that a 49-kDa protein mediates Na+-dependent taurocholate uptake and that a 54-kDa protein is involved in Na+-independent bile acid uptake. Studies with canalicular membrane vesicles have demonstrated saturable, sodium-independent taurocholate transport, which is sensitive to electrical potential, exhibits trans-stimulation, and appears to be mediated by a 100-kDa canalicular membrane glycoprotein. Studies in mutant rats with conjugated hyperbilirubinemia suggest the presence of a separate canalicular transport mechanism utilized by sulfated bile acids and organic anions such as bilirubin and sulfobromophthalein. UDCA produces in some species a dramatic hypercholeresis that is greater than expected based on the osmotic effect of the secreted bile acid. The hypercholeresis appears attributable to stimulation of biliary bicarbonate output and is decreased or abolished in the perfused rat liver by amiloride or perfusate Na+ substitution. These same maneuvers dramatically alter UDCA biotransformation (unconjugated UDCA disappears from bile, and UDCA glucuronide becomes a major metabolite) and lower hepatocyte intracellular pH. These and other findings indicate that UDCA hypercholeresis is tightly linked to biliary excretion of the unconjugated species and suggest that UDCA biotransformation may be influenced by intracellular pH.

Similar articles

Show all 12 similar articles

References

  1. Gastroenterology. 1978 Jan;74(1):93-100 - PubMed
  2. Am J Physiol. 1985 Jun;248(6 Pt 1):G648-54 - PubMed
  3. J Biol Chem. 1987 Aug 15;262(23):11324-30 - PubMed
  4. Biochim Biophys Acta. 1987 Oct 2;903(2):388-94 - PubMed
  5. Biochim Biophys Acta. 1988 Mar 3;938(3):386-94 - PubMed
  6. Gastroenterology. 1988 Aug;95(2):454-63 - PubMed
  7. Am J Physiol. 1989 Jan;256(1 Pt 1):G44-52 - PubMed
  8. Am J Physiol. 1989 May;256(5 Pt 1):G826-32 - PubMed
  9. J Pharmacol Exp Ther. 1989 Jul;250(1):301-8 - PubMed
  10. Am J Physiol. 1988 Feb;254(2 Pt 1):G232-41 - PubMed
  11. J Clin Invest. 1989 Feb;83(2):565-73 - PubMed
  12. J Clin Invest. 1985 Apr;75(4):1256-63 - PubMed
  13. Am J Physiol. 1986 Jan;250(1 Pt 1):G35-43 - PubMed
  14. J Biol Chem. 1986 Sep 15;261(26):12042-6 - PubMed
  15. Am J Physiol. 1987 Jan;252(1 Pt 1):G109-13 - PubMed
  16. J Clin Invest. 1987 Sep;80(3):684-90 - PubMed
  17. Am J Physiol. 1988 May;254(5 Pt 1):G732-40 - PubMed
  18. J Clin Invest. 1988 May;81(5):1593-9 - PubMed
  19. J Lipid Res. 1988 Feb;29(2):144-56 - PubMed
  20. J Biol Chem. 1988 Jun 15;263(17):8338-43 - PubMed
  21. Gastroenterology. 1988 Sep;95(3):793-804 - PubMed
  22. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6147-51 - PubMed
  23. Biochemistry. 1987 Apr 7;26(7):1801-4 - PubMed
  24. Biol Chem Hoppe Seyler. 1987 Sep;368(9):1143-50 - PubMed
  25. Am J Physiol. 1986 Nov;251(5 Pt 1):G656-64 - PubMed
  26. Biochim Biophys Acta. 1986 Nov 17;862(2):352-60 - PubMed
  27. Am J Physiol. 1987 Jan;252(1 Pt 1):G84-91 - PubMed
  28. Am J Physiol. 1987 Feb;252(2 Pt 1):G163-9 - PubMed
  29. Am J Physiol. 1987 Feb;252(2 Pt 1):G219-28 - PubMed
  30. Gastroenterology. 1986 Apr;90(4):837-52 - PubMed
  31. Am J Physiol. 1985 Oct;249(4 Pt 1):G427-33 - PubMed
  32. Hepatology. 1984 Mar-Apr;4(2):205-12 - PubMed
  33. Am J Physiol. 1982 Jul;243(1):G48-53 - PubMed
  34. J Biol Chem. 1984 May 10;259(9):5406-8 - PubMed
  35. J Biol Chem. 1984 Aug 25;259(16):10614-22 - PubMed
  36. Hoppe Seylers Z Physiol Chem. 1978 Feb;359(2):181-92 - PubMed
  37. Am J Physiol. 1984 Dec;247(6 Pt 1):G736-48 - PubMed
  38. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5232-6 - PubMed
  39. J Clin Invest. 1983 Oct;72(4):1470-81 - PubMed
  40. Digestion. 1983;27(4):189-95 - PubMed
  41. J Clin Invest. 1984 Mar;73(3):659-63 - PubMed
  42. Am J Physiol. 1984 May;246(5 Pt 1):G477-83 - PubMed
  43. J Biol Chem. 1983 Jul 25;258(14):8890-5 - PubMed
  44. Proc Natl Acad Sci U S A. 1981 Feb;78(2):986-90 - PubMed
  45. Am J Physiol. 1982 Sep;243(3):G208-13 - PubMed
  46. Hepatology. 1982 Sep-Oct;2(5):572-9 - PubMed
  47. Am J Physiol. 1982 Dec;243(6):G484-92 - PubMed
  48. Eur J Biochem. 1982 Dec;129(1):13-24 - PubMed
  49. Life Sci. 1982 Nov 1;31(18):1973-85 - PubMed
  50. Am J Physiol. 1981 Oct;241(4):G337-43 - PubMed
  51. Gastroenterology. 1980 Jul;79(1):82-9 - PubMed

Substances

MeSH terms

Publication Types

Grant support

LinkOut - more resources