Display options
Share it on

Transl Res. 2018 Nov;201:136-153. doi: 10.1016/j.trsl.2018.05.007. Epub 2018 Jun 23.

Molecular assessment of circulating exosomes toward liquid biopsy diagnosis of Ewing sarcoma family of tumors.

Translational research : the journal of laboratory and clinical medicine

Peng Zhang, Glenson Samuel, Jennifer Crow, Andrew K Godwin, Yong Zeng

Affiliations

  1. Department of Chemistry, University of Kansas, Lawrence, Kansas.
  2. Division of Hematology, Oncology and Bone Marrow Transplant, Children's Mercy Hospitals & Clinics, Kansas City, Missouri.
  3. Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas.
  4. Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas; University of Kansas Cancer Center, Kansas City, Kansas. Electronic address: [email protected].
  5. Department of Chemistry, University of Kansas, Lawrence, Kansas; University of Kansas Cancer Center, Kansas City, Kansas. Electronic address: [email protected].

PMID: 30031766 PMCID: PMC6424494 DOI: 10.1016/j.trsl.2018.05.007

Abstract

Ewing sarcoma was first described in 1921 in the Proceedings of the New York Pathological Society by an eminent American pathologist from Cornell named James R. Ewing as a "diffuse endothelioma of bone." Since this initial description, more has been discovered regarding Ewing sarcoma and in the 1980's both Ewing sarcoma and peripheral primitive neuroectodermal tumors due to their similar features and shared identical genetic abnormality were grouped into a class of cancers entitled Ewing sarcoma family of tumors (ESFTs). Ewing sarcoma is the second most common pediatric osseous malignancy followed by osteosarcoma, with highest incidence among 10-20 years old. Ewing sarcoma is consistently associated with chromosomal translocation and functional fusion of the EWSR1 gene to any of several structurally related transcription factor genes of the E26 transformation-specific family. These tumor-specific molecular rearrangements are useful for primary diagnosis, may provide prognostic information, and present potential therapeutic targets. Therefore, ways to rapidly and efficiently detect these defining genomic alterations are of clinical relevance. Within the past decade, liquid biopsies including extracellular vesicles (EVs), have emerged as a promising alternative and/or complimentary approach to standard tumor biopsies. It was recently reported that fusion mRNAs from tumor-specific chromosome translocations can be detected in Ewing sarcoma cell-derived exosomes. Within this review, we overview the current advances in Ewing sarcoma and the opportunities and challenges in exploiting circulating exosomes, primarily small bioactive EVs (30-180 nm), as developing sources of biomarkers for diagnosis and therapeutic response monitoring in children and young adult patients with ESFT.

Copyright © 2018. Published by Elsevier Inc.

References

  1. Cancer Res. 1999 Apr 1;59(7):1428-32 - PubMed
  2. J Bone Joint Surg Am. 2000 May;82(5):667-74 - PubMed
  3. Lab Invest. 2000 Dec;80(12):1833-44 - PubMed
  4. Skeletal Radiol. 2000 Nov;29(11):646-51 - PubMed
  5. Oncogene. 2001 Sep 10;20(40):5747-54 - PubMed
  6. J Immunol. 2001 Dec 15;167(12):6736-44 - PubMed
  7. Br J Cancer. 2001 Nov 30;85(11):1646-54 - PubMed
  8. Gynecol Oncol. 2002 Mar;84(3):443-8 - PubMed
  9. Lancet. 2002 Jul 27;360(9329):295-305 - PubMed
  10. N Engl J Med. 2003 Feb 20;348(8):694-701 - PubMed
  11. Radiology. 1992 Jul;184(1):243-8 - PubMed
  12. Semin Cancer Biol. 2003 Aug;13(4):275-81 - PubMed
  13. Am J Respir Cell Mol Biol. 2004 Jul;31(1):114-21 - PubMed
  14. J Clin Oncol. 2005 Jul 1;23(19):4354-62 - PubMed
  15. Gastroenterology. 2005 Jun;128(7):1796-804 - PubMed
  16. Blood Cells Mol Dis. 2005 Sep-Oct;35(2):149-52 - PubMed
  17. Oncologist. 2006 May;11(5):503-19 - PubMed
  18. J Clin Oncol. 2006 Aug 20;24(24):3997-4002 - PubMed
  19. Mol Cancer Ther. 2006 Aug;5(8):1905-8 - PubMed
  20. Clin Orthop Relat Res. 2006 Sep;450:25-7 - PubMed
  21. J Clin Oncol. 2007 Dec 1;25(34):5435-41 - PubMed
  22. Oncologist. 2007 Nov;12(11):1336-43 - PubMed
  23. Trends Cell Biol. 2008 May;18(5):199-209 - PubMed
  24. Curr Opin Oncol. 2008 Jul;20(4):412-8 - PubMed
  25. J Pediatr Hematol Oncol. 2008 Jun;30(6):425-30 - PubMed
  26. Gynecol Oncol. 2008 Jul;110(1):13-21 - PubMed
  27. J Clin Oncol. 2008 Sep 20;26(27):4385-93 - PubMed
  28. Zhonghua Fu Chan Ke Za Zhi. 2009 Apr;44(4):268-72 - PubMed
  29. Dtsch Arztebl Int. 2009 Dec;106(49):809-18; quiz 819-20 - PubMed
  30. Lab Chip. 2010 Feb 21;10(4):505-11 - PubMed
  31. J Clin Oncol. 2010 Apr 20;28(12):1982-8 - PubMed
  32. Int J Clin Exp Pathol. 2010 Mar 19;3(4):338-47 - PubMed
  33. Oncogene. 2010 Aug 12;29(32):4504-16 - PubMed
  34. J Clin Oncol. 2010 Jul 10;28(20):3284-91 - PubMed
  35. Oncol Rep. 2011 Mar;25(3):749-62 - PubMed
  36. Methods Mol Biol. 2011;728:235-46 - PubMed
  37. Clin Med Oncol. 2008;2:461-7 - PubMed
  38. Cancer Biomark. 2010-2011;8(4-5):281-91 - PubMed
  39. Skeletal Radiol. 2012 Mar;41(3):249-56 - PubMed
  40. Methods. 2012 Feb;56(2):293-304 - PubMed
  41. Pediatr Hematol Oncol. 2012 Feb;29(1):12-27 - PubMed
  42. Mayo Clin Proc. 2012 May;87(5):475-87 - PubMed
  43. Curr Gene Ther. 2012 Aug;12(4):262-74 - PubMed
  44. Lab Chip. 2012 Dec 21;12(24):5202-10 - PubMed
  45. Nat Med. 2012 Dec;18(12):1835-40 - PubMed
  46. J Proteomics. 2013 Mar 27;80:171-82 - PubMed
  47. J Cell Biol. 2013 Feb 18;200(4):373-83 - PubMed
  48. J Neurooncol. 2013 May;113(1):1-11 - PubMed
  49. J Mol Med (Berl). 2013 Apr;91(4):431-7 - PubMed
  50. Biol Cell. 2013 Jul;105(7):289-303 - PubMed
  51. Biol Chem. 2013 Oct;394(10):1253-62 - PubMed
  52. Nat Rev Clin Oncol. 2013 Aug;10(8):472-84 - PubMed
  53. J Extracell Vesicles. 2013 May 27;2:null - PubMed
  54. PLoS One. 2013 Oct 04;8(10):e77416 - PubMed
  55. Cancer Res. 2013 Nov 1;73(21):6384-8 - PubMed
  56. Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):711-6 - PubMed
  57. Lab Chip. 2014 Jun 7;14(11):1891-900 - PubMed
  58. Nat Biotechnol. 2014 May;32(5):490-5 - PubMed
  59. Commun Integr Biol. 2014 Jan 1;7(1):e28231 - PubMed
  60. Lab Chip. 2014 Oct 7;14(19):3773-80 - PubMed
  61. J Extracell Vesicles. 2014 Sep 18;3:null - PubMed
  62. Anal Chem. 2014 Nov 18;86(22):11125-32 - PubMed
  63. J Chromatogr A. 2014 Dec 5;1371:125-35 - PubMed
  64. Sci Rep. 2015 Jan 06;5:7639 - PubMed
  65. ACS Nano. 2015 Mar 24;9(3):2321-7 - PubMed
  66. Biomicrofluidics. 2015 Feb 05;9(1):014112 - PubMed
  67. Expert Rev Mol Diagn. 2015 Jun;15(6):725-33 - PubMed
  68. Lab Chip. 2015 Jun 7;15(11):2388-94 - PubMed
  69. Nat Commun. 2015 May 11;6:6999 - PubMed
  70. J Extracell Vesicles. 2015 May 14;4:27066 - PubMed
  71. J Extracell Vesicles. 2015 Jul 17;4:27031 - PubMed
  72. JAMA. 2015 Sep 1;314(9):881-3 - PubMed
  73. Analyst. 2016 Jan 21;141(2):450-460 - PubMed
  74. Oncotarget. 2015 Nov 10;6(35):37151-68 - PubMed
  75. Nature. 2015 Nov 19;527(7578):329-35 - PubMed
  76. Oncotarget. 2015 Dec 1;6(38):40575-87 - PubMed
  77. BMB Rep. 2016 Jan;49(1):18-25 - PubMed
  78. Lab Chip. 2016 Feb 7;16(3):489-96 - PubMed
  79. Adv Mater. 2016 Feb 10;28(6):1176-207 - PubMed
  80. Cancer Med. 2016 Feb;5(2):325-36 - PubMed
  81. Genes Cancer. 2015 Nov;6(11-12):452-61 - PubMed
  82. ACS Nano. 2016 Feb 23;10(2):1802-9 - PubMed
  83. Int J Mol Sci. 2016 Feb 06;17(2):170 - PubMed
  84. Lab Chip. 2016 Aug 2;16(16):3033-42 - PubMed
  85. Sci Rep. 2016 Apr 12;6:23978 - PubMed
  86. J Lab Autom. 2016 Aug;21(4):599-608 - PubMed
  87. J Extracell Vesicles. 2016 Jun 20;5:31655 - PubMed
  88. Sci Rep. 2016 Jul 28;6:30460 - PubMed
  89. Nat Nanotechnol. 2016 Nov;11(11):936-940 - PubMed
  90. Nanomedicine (Lond). 2016 Sep;11(17):2359-77 - PubMed
  91. Transl Lung Cancer Res. 2016 Aug;5(4):420-3 - PubMed
  92. Nat Commun. 2016 Oct 13;7:13096 - PubMed
  93. J Extracell Vesicles. 2016 Oct 31;5:32945 - PubMed
  94. Oncotarget. 2017 Feb 14;8(7):11917-11936 - PubMed
  95. ACS Nano. 2017 Feb 28;11(2):1360-1370 - PubMed
  96. Biosens Bioelectron. 2017 May 15;91:588-605 - PubMed
  97. PLoS One. 2017 Jan 23;12(1):e0170628 - PubMed
  98. Theranostics. 2017 Jan 26;7(3):789-804 - PubMed
  99. PLoS One. 2017 Apr 3;12(4):e0175050 - PubMed
  100. Sci Rep. 2017 Apr 24;7:46224 - PubMed
  101. Circ Res. 2017 May 12;120(10):1632-1648 - PubMed
  102. Front Physiol. 2017 May 05;8:275 - PubMed
  103. ACS Nano. 2017 Jul 25;11(7):6641-6651 - PubMed
  104. ACS Nano. 2017 Jul 25;11(7):6968-6976 - PubMed
  105. Ann Transl Med. 2017 Jun;5(12):263 - PubMed
  106. Int J Mol Med. 2017 Sep;40(3):834-844 - PubMed
  107. Nat Biomed Eng. 2017;1:null - PubMed
  108. Lab Chip. 2017 Oct 25;17(21):3558-3577 - PubMed
  109. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10584-10589 - PubMed
  110. Nat Biomed Eng. 2017;1: - PubMed
  111. ACS Nano. 2017 Nov 28;11(11):11182-11193 - PubMed
  112. ACS Nano. 2017 Nov 28;11(11):10712-10723 - PubMed
  113. Mol Cell Proteomics. 2018 Mar;17(3):495-515 - PubMed
  114. Nat Commun. 2018 Jan 12;9(1):175 - PubMed
  115. Nat Commun. 2018 Mar 28;9(1):1254 - PubMed
  116. Nature. 1983 Nov 24-30;306(5941):391-5 - PubMed
  117. Cancer Genet Cytogenet. 1984 May;12(1):21-5 - PubMed
  118. N Engl J Med. 1994 Aug 4;331(5):294-9 - PubMed
  119. Histopathology. 1993 Dec;23(6):557-61 - PubMed
  120. J Clin Oncol. 1996 Apr;14(4):1245-51 - PubMed
  121. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11786-91 - PubMed

Substances

MeSH terms

Publication Types

Grant support