Display options
Share it on

J Physiol. 2018 Dec;596(23):5625-5640. doi: 10.1113/JP276072. Epub 2018 Jun 28.

The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults.

The Journal of physiology

Mitchell C Lock, Ross L Tellam, Kimberley J Botting, Kimberley C W Wang, Joseph B Selvanayagam, Doug A Brooks, Mike Seed, Janna L Morrison

Affiliations

  1. Early Origins of Adult Health Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
  2. School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia.
  3. Cardiac Imaging Research Group, Department of Heart Health, South Australian Health & Medical Research Institute, and Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
  4. Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
  5. Hospital for Sick Children, Division of Cardiology, 555 University Avenue, Toronto, ON M5G 1X8, Canada.

PMID: 29785790 PMCID: PMC6265572 DOI: 10.1113/JP276072

Abstract

Myocardial infarction is a primary contributor towards the global burden of cardiovascular disease. Rather than repairing the existing damage of myocardial infarction, current treatments only address the symptoms of the disease and reducing the risk of a secondary infarction. Cardiac regenerative capacity is dependent on cardiomyocyte proliferation, which concludes soon after birth in humans and precocial species such as sheep. Human fetal cardiac tissue has some ability to repair following tissue damage, whereas a fully matured human heart has minimal capacity for cellular regeneration. This is in contrast to neonatal mice and adult zebrafish hearts, which retain the ability to undergo cardiomyocyte proliferation and can regenerate cardiac tissue after birth. In mice and zebrafish models, microRNAs (miRNAs) have been implicated in the regulation of genes involved in cardiac cell cycle progression and regeneration. However, the significance of miRNA regulation in cardiomyocyte proliferation for humans and other large mammals, where the timing of heart development in relation to birth is similar, remains unclear. miRNAs may be valuable targets for therapies that promote cardiac repair after injury. Therefore, elucidating the role of specific miRNAs in large animals, where heart development closely resembles that of humans, remains vitally important for identifying therapeutic targets that may be translated into clinical practice focused on tissue repair.

© 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

Keywords: epigenetics; fetal development; heart attack; heart disease; miRNA; programming; regeneration

References

  1. Nature. 2014 Apr 24;508(7497):531-5 - PubMed
  2. Cytobios. 1980;28(109):41-61 - PubMed
  3. Cardiovasc Res. 1998 Jul;39(1):60-76 - PubMed
  4. Development. 2008 Jan;135(1):183-92 - PubMed
  5. Curr Opin Cardiol. 2014 May;29(3):207-13 - PubMed
  6. Circulation. 2002 Jun 11;105(23):2791-6 - PubMed
  7. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1446-51 - PubMed
  8. Br Med J (Clin Res Ed). 1986 Jun 28;292(6537):1717-9 - PubMed
  9. Dev Dyn. 2012 Dec;241(12):1993-2004 - PubMed
  10. Nature. 2010 Mar 25;464(7288):606-9 - PubMed
  11. J Biol Chem. 2004 Aug 20;279(34):35858-66 - PubMed
  12. Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15546-51 - PubMed
  13. Am J Physiol Lung Cell Mol Physiol. 2010 Apr;298(4):L575-83 - PubMed
  14. Sci Signal. 2011 Oct 25;4(196):ra70 - PubMed
  15. Nature. 2011 Jan 20;469(7330):336-42 - PubMed
  16. Nat Cell Biol. 2013 Nov;15(11):1282-93 - PubMed
  17. Circ Res. 2013 Jun 7;112(12):1557-66 - PubMed
  18. Genes Dev. 2005 May 15;19(10):1175-87 - PubMed
  19. Pediatr Res. 1972 Dec;6(12):887-93 - PubMed
  20. Eur J Cardiothorac Surg. 2010 Dec;38(6):691-8 - PubMed
  21. Biochim Biophys Acta. 2013 Jan;1832(1):1-10 - PubMed
  22. J Endocrinol. 2014 Jun;221(3):R87-R103 - PubMed
  23. Cell. 2012 Apr 27;149(3):671-83 - PubMed
  24. Nat Med. 2007 Aug;13(8):962-9 - PubMed
  25. Stem Cell Res. 2014 Nov;13(3 Pt B):556-70 - PubMed
  26. Arch Intern Med. 2012 May 14;172(9):739-41 - PubMed
  27. Atherosclerosis. 2014 Jan;232(1):171-9 - PubMed
  28. Methodist Debakey Cardiovasc J. 2013 Oct-Dec;9(4):187-94 - PubMed
  29. Cardiovasc Res. 2012 Sep 1;95(4):517-26 - PubMed
  30. Drug Discov Today. 2014 May;19(5):602-9 - PubMed
  31. J Physiol. 2011 Oct 1;589(Pt 19):4709-22 - PubMed
  32. Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):724-32 - PubMed
  33. F1000Res. 2016 Dec 13;5:2846 - PubMed
  34. Eur J Med Res. 1997 Nov 28;2(11):465-8 - PubMed
  35. Science. 2009 Apr 3;324(5923):98-102 - PubMed
  36. Oncotarget. 2017 Feb 28;8(9):16084-16098 - PubMed
  37. Circ Res. 1998 Jul 13;83(1):15-26 - PubMed
  38. Med J Aust. 2011 Apr 18;194(8):405-9 - PubMed
  39. J Am Heart Assoc. 2014 Jul 28;3(4):null - PubMed
  40. Stem Cell Res. 2014 Nov;13(3 Pt B):542-55 - PubMed
  41. FASEB J. 2012 Jan;26(1):397-408 - PubMed
  42. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):E8372-E8381 - PubMed
  43. Science. 2011 Apr 22;332(6028):458-61 - PubMed
  44. Mitochondrion. 2016 Mar;27:6-14 - PubMed
  45. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17615-20 - PubMed
  46. Circ Res. 2011 Sep 2;109(6):670-9 - PubMed
  47. Circ Res. 2009 Jan 30;104(2):170-8, 6p following 178 - PubMed
  48. J Clin Invest. 2009 Sep;119(9):2772-86 - PubMed
  49. BMJ. 2014 Apr 28;348:g2688 - PubMed
  50. J Mol Cell Cardiol. 2003 Dec;35(12):1385-94 - PubMed
  51. Am J Physiol. 1977 Dec;233(6):H707-10 - PubMed
  52. Circ Res. 2012 Jan 6;110(1):71-81 - PubMed
  53. Physiol Rev. 2002 Oct;82(4):893-922 - PubMed
  54. J Appl Physiol (1985). 2007 Mar;102(3):1130-42 - PubMed
  55. Circulation. 2011 Oct 4;124(14):1537-47 - PubMed
  56. Virchows Arch B Cell Pathol Incl Mol Pathol. 1985;48(1):59-67 - PubMed
  57. Genes Dev. 2008 Dec 1;22(23):3242-54 - PubMed
  58. Proc Nutr Soc. 1998 Feb;57(1):113-22 - PubMed
  59. Int J Mol Sci. 2017 Dec 06;18(12):null - PubMed
  60. Dev Cell. 2010 Oct 19;19(4):491-505 - PubMed
  61. J Endocrinol. 2007 Feb;192(2):R1-8 - PubMed
  62. Nat Commun. 2012 Feb 21;3:688 - PubMed
  63. Nat Commun. 2018 Feb 21;9(1):754 - PubMed
  64. Nature. 2013 Mar 7;495(7439):107-10 - PubMed
  65. Am J Physiol. 1996 Nov;271(5 Pt 2):H2183-9 - PubMed
  66. Genes Dev. 2010 May;24(9):862-74 - PubMed
  67. Biochim Biophys Acta. 2008 Nov;1779(11):682-91 - PubMed
  68. Am J Physiol Regul Integr Comp Physiol. 2012 May;302(9):R1101-10 - PubMed
  69. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2394-9 - PubMed
  70. J Invest Dermatol. 2016 May;136(5):905-911 - PubMed
  71. Cell. 2009 Jul 23;138(2):257-70 - PubMed
  72. Circulation. 2009 Dec 8;120(23):2377-85 - PubMed
  73. Endocrinology. 1986 Feb;118(2):533-7 - PubMed
  74. Cell. 2014 May 8;157(4):795-807 - PubMed
  75. J Cardiovasc Magn Reson. 2017 Sep 13;19(1):69 - PubMed
  76. Science. 2002 Dec 13;298(5601):2188-90 - PubMed
  77. Virchows Arch B Cell Pathol Incl Mol Pathol. 1980;32(2):109-25 - PubMed
  78. Diabetes. 2012 Jun;61(6):1633-41 - PubMed
  79. Circulation. 2007 Jul 17;116(3):258-67 - PubMed
  80. Dev Cell. 2010 Apr 20;18(4):510-25 - PubMed
  81. Am J Physiol Regul Integr Comp Physiol. 2003 Dec;285(6):R1481-9 - PubMed
  82. Cell. 2012 Sep 28;151(1):206-20 - PubMed
  83. Circ Res. 2008 Sep 26;103(7):702-9 - PubMed
  84. Int J Cardiol. 2013 Oct 3;168(3):2049-56 - PubMed
  85. Heart. 2003 Aug;89(8):949-58 - PubMed
  86. PLoS Genet. 2011 Feb;7(2):e1001313 - PubMed
  87. Fetal Ther. 1986;1(4):168-75 - PubMed
  88. Anat Rec A Discov Mol Cell Evol Biol. 2003 Oct;274(2):952-61 - PubMed
  89. Circulation. 2017 Mar 7;135(10):e146-e603 - PubMed
  90. Nat Cell Biol. 2011 Aug 01;13(8):877-83 - PubMed
  91. Tumour Biol. 2014 Sep;35(9):8765-70 - PubMed
  92. Circ Cardiovasc Genet. 2013 Feb;6(1):135-6 - PubMed
  93. BMC Genomics. 2015 Jul 22;16:541 - PubMed
  94. Nature. 2014 May 29;509(7502):572-3 - PubMed
  95. Annu Rev Physiol. 2006;68:29-49 - PubMed
  96. Dev Biol. 2012 May 15;365(2):319-27 - PubMed
  97. Physiol Rev. 2007 Apr;87(2):521-44 - PubMed
  98. Nat Rev Mol Cell Biol. 2013 Aug;14(8):529-41 - PubMed
  99. Circ Res. 2002 May 31;90(10):1044-54 - PubMed
  100. Cell. 2014 Apr 24;157(3):565-79 - PubMed
  101. J Cardiovasc Pharmacol. 2010 Aug;56(2):130-40 - PubMed
  102. Asian Cardiovasc Thorac Ann. 2010 Feb;18(2):122-6 - PubMed
  103. Nature. 2012 Dec 20;492(7429):376-81 - PubMed
  104. Physiol Rep. 2014 Dec 11;2(12):null - PubMed
  105. Am J Physiol. 1992 Jun;262(6 Pt 2):H1867-76 - PubMed
  106. Nature. 2017 Jan 12;541(7636):222-227 - PubMed
  107. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):187-92 - PubMed
  108. Int J Biochem Cell Biol. 2005 Sep;37(9):1746-51 - PubMed
  109. Hypertension. 1984 Nov-Dec;6(6 Pt 2):III38-43 - PubMed
  110. Clin Exp Pharmacol Physiol. 2013 Nov;40(11):803-16 - PubMed
  111. PLoS One. 2012;7(2):e30933 - PubMed
  112. Eur Heart J. 2010 Aug;31(16):2058-66 - PubMed
  113. Am J Cardiol. 1973 Feb;31(2):211-9 - PubMed
  114. Cell Stem Cell. 2011 Nov 4;9(5):420-32 - PubMed
  115. FASEB J. 2014 Dec;28(12):5097-110 - PubMed
  116. Med Biol Eng Comput. 2011 Jul;49(7):723-32 - PubMed
  117. PLoS One. 2012;7(12):e52120 - PubMed
  118. Clin Obstet Gynecol. 1986 Sep;29(3):502-13 - PubMed
  119. Science. 2011 Feb 25;331(6020):1078-80 - PubMed
  120. Clin Exp Pharmacol Physiol. 2012 Sep;39(9):814-23 - PubMed
  121. Lab Invest. 1984 May;50(5):571-7 - PubMed
  122. Sci Transl Med. 2015 Mar 18;7(279):279ra38 - PubMed
  123. Mol Cell Biochem. 1994 Apr-May;133-134:277-86 - PubMed
  124. Circ Res. 2017 Jan 20;120(2):324-331 - PubMed
  125. Nature. 2013 May 9;497(7448):249-253 - PubMed
  126. Circ Res. 2005 Jan 7;96(1):110-8 - PubMed
  127. Pediatr Cardiol. 2004 May-Jun;25(3):191-200 - PubMed
  128. Nat Biotechnol. 2017 Apr 11;35(4):291 - PubMed

Substances

MeSH terms

Publication Types

Grant support