Display options
Share it on

Toxicol Appl Pharmacol. 2017 Aug 15;329:309-317. doi: 10.1016/j.taap.2017.06.018. Epub 2017 Jun 20.

Modulation of the heart's electrical properties by the anticonvulsant drug retigabine.

Toxicology and applied pharmacology

Lena Rubi, Michael Kovar, Eva Zebedin-Brandl, Xaver Koenig, Manuel Dominguez-Rodriguez, Hannes Todt, Helmut Kubista, Stefan Boehm, Karlheinz Hilber

Affiliations

  1. Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
  2. Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria. Electronic address: [email protected].
  3. Center for Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria. Electronic address: [email protected].

PMID: 28641963 PMCID: PMC6420109 DOI: 10.1016/j.taap.2017.06.018

Abstract

Retigabine, currently used as antiepileptic drug, has a wide range of potential medical uses. Administration of the drug in patients can lead to QT interval prolongation in the electrocardiogram and to cardiac arrhythmias in rare cases. This suggests that the drug may perturb the electrical properties of the heart, and the underlying mechanisms were investigated here. Effects of retigabine on currents through human cardiac ion channels, heterologously expressed in tsA-201 cells, were studied in whole-cell patch-clamp experiments. In addition, the drug's impact on the cardiac action potential was tested. This was done using ventricular cardiomyocytes isolated from Langendorff-perfused guinea pig hearts and cardiomyocytes derived from human induced pluripotent stem cells. Further, to unravel potential indirect effects of retigabine on the heart which might involve the autonomic nervous system, membrane potential and noradrenaline release from sympathetic ganglionic neurons were measured in the absence and presence of the drug. Retigabine significantly inhibited currents through hKv11.1 potassium, hNav1.5 sodium, as well as hCav1.2 calcium channels, but only in supra-therapeutic concentrations. In a similar concentration range, the drug shortened the action potential in both guinea pig and human cardiomyocytes. Therapeutic concentrations of retigabine, on the other hand, were sufficient to inhibit the activity of sympathetic ganglionic neurons. We conclude that retigabine- induced QT interval prolongation, and the reported cases of cardiac arrhythmias after application of the drug in a typical daily dose range, cannot be explained by a direct modulatory effect on cardiac ion channels. They are rather mediated by indirect actions at the level of the autonomic nervous system.

Copyright © 2017. Published by Elsevier Inc.

Keywords: Cardiac arrhythmia; Cardiomyocytes; Ion channels; QT interval; Retigabine; Sympathetic ganglionic neurons

References

  1. Drug Metab Dispos. 1999 May;27(5):613-22 - PubMed
  2. J Membr Biol. 2000 Sep 15;177(2):129-35 - PubMed
  3. Arzneimittelforschung. 2000 Dec;50(12):1063-70 - PubMed
  4. Trends Pharmacol Sci. 2001 May;22(5):240-6 - PubMed
  5. J Neurosci. 2001 Aug 1;21(15):5535-45 - PubMed
  6. J Clin Pharmacol. 2002 Feb;42(2):175-82 - PubMed
  7. Pharmacol Rev. 2002 Mar;54(1):43-99 - PubMed
  8. Mol Pharmacol. 2002 Apr;61(4):921-7 - PubMed
  9. Circulation. 2002 Oct 22;106(17):2238-43 - PubMed
  10. Clin Pharmacol Ther. 2003 Jan;73(1):61-70 - PubMed
  11. Cardiovasc Res. 2003 Apr 1;58(1):32-45 - PubMed
  12. Eur J Clin Pharmacol. 2003 Apr;58(12):795-802 - PubMed
  13. Br J Clin Pharmacol. 2003 Jul;56(1):39-45 - PubMed
  14. J Cardiovasc Electrophysiol. 2004 Nov;15(11):1302-9 - PubMed
  15. J Cardiovasc Electrophysiol. 2005 Mar;16(3):278-84 - PubMed
  16. J Clin Invest. 2005 Aug;115(8):2018-24 - PubMed
  17. Nature. 2006 Mar 23;440(7083):463-9 - PubMed
  18. Neurology. 2007 Apr 10;68(15):1197-204 - PubMed
  19. J Cardiovasc Electrophysiol. 2007 Sep;18(9):960-4 - PubMed
  20. Br J Pharmacol. 2008 Aug;154(7):1446-56 - PubMed
  21. Br J Pharmacol. 2009 Apr;156(8):1185-95 - PubMed
  22. J Pharmacol Toxicol Methods. 2009 Jul-Aug;60(1):1-10 - PubMed
  23. Neurology. 2010 Nov 16;75(20):1817-24 - PubMed
  24. Epilepsy Res. 2010 Dec;92(2-3):89-124 - PubMed
  25. Neurology. 2011 May 3;76(18):1555-63 - PubMed
  26. PLoS One. 2011;6(5):e20300 - PubMed
  27. Neuropsychiatr Dis Treat. 2011;7:409-14 - PubMed
  28. Nat Rev Drug Discov. 2011 Sep 30;10(10):729-30 - PubMed
  29. Drugs. 2011 Nov 12;71(16):2151-78 - PubMed
  30. Epilepsia. 2012 Mar;53(3):412-24 - PubMed
  31. Clin Pharmacol. 2010;2:225-36 - PubMed
  32. Epilepsy Res. 2012 Nov;102(1-2):117-21 - PubMed
  33. Epilepsy Behav. 2013 Mar;26(3):421-6 - PubMed
  34. Toxicol Appl Pharmacol. 2013 Dec 1;273(2):259-68 - PubMed
  35. J Cent Nerv Syst Dis. 2013 Oct 23;5:31-41 - PubMed
  36. Am J Cardiol. 1987 Apr 30;59(11):10E-18E - PubMed
  37. Pflugers Arch. 2014 Dec;466(12):2289-303 - PubMed
  38. Cell Rep. 2014 Apr 10;7(1):1-11 - PubMed
  39. Am J Drug Alcohol Abuse. 2014 May;40(3):244-50 - PubMed
  40. Br J Pharmacol. 2015 Jun;172(11):2878-91 - PubMed
  41. Epilepsia. 2015 Apr;56(4):647-57 - PubMed
  42. Seizure. 2015 Aug;30:93-100 - PubMed
  43. Cardiovasc Toxicol. 2017 Apr;17(2):215-218 - PubMed
  44. Nat Commun. 2016 May 24;7:11671 - PubMed
  45. Circ Res. 1981 Jul;49(1):1-15 - PubMed
  46. Naunyn Schmiedebergs Arch Pharmacol. 1994 Nov;350(5):454-8 - PubMed
  47. Neuroscience. 1993 Jan;52(1):107-13 - PubMed
  48. J Cardiol. 1994 May-Jun;24(3):243-7 - PubMed

Substances

MeSH terms

Publication Types

Grant support