Display options
Share it on

J Neural Transm (Vienna). 2017 Jul;124(7):775-798. doi: 10.1007/s00702-016-1661-z. Epub 2017 Feb 24.

Glutamate, T cells and multiple sclerosis.

Journal of neural transmission (Vienna, Austria : 1996)

Mia Levite

Affiliations

  1. Faculty of Medicine, School of Pharmacy, The Hebrew University, Jerusalem, Israel. [email protected].
  2. Institute of Gene Therapy, Hadassah Medical Center, 91120, Ein Karem, Jerusalem, Israel. [email protected].

PMID: 28236206 DOI: 10.1007/s00702-016-1661-z

Abstract

Glutamate is the major excitatory neurotransmitter in the nervous system, where it induces multiple beneficial and essential effects. Yet, excess glutamate, evident in a kaleidoscope of acute and chronic pathologies, is absolutely catastrophic, since it induces excitotoxicity and massive loss of brain function. Both the beneficial and the detrimental effects of glutamate are mediated by a large family of glutamate receptors (GluRs): the ionotropic glutamate receptors (iGluRs) and the metabotropic glutamate receptors (mGluRs), expressed by most/all cells of the nervous system, and also by many non-neural cells in various peripheral organs and tissues. T cells express on their cell surface several types of functional GluRs, and so do few other immune cells. Furthermore, glutamate by itself activates resting normal human T cells, and induces/elevates key T cell functions, among them: T cell adhesion, chemotactic migration, cytokine secretion, gene expression and more. Glutamate has also potent effects on antigen/mitogen/cytokine-activated T cells. Furthermore, T cells can even produce and release glutamate, and affect other cells and themselves via their own glutamate. Multiple sclerosis (MS) and its animal model Experimental Autoimmune Encephalomyelitis (EAE) are mediated by autoimmune T cells. In MS and EAE, there are excess glutamate levels, and multiple abnormalities in glutamate degrading enzymes, glutamate transporters, glutamate receptors and glutamate signaling. Some GluR antagonists block EAE. Enhancer of mGluR4 protects from EAE via regulatory T cells (Tregs), while mGluR4 deficiency exacerbates EAE. The protective effect of mGluR4 on EAE calls for testing GluR4 enhancers in MS patients. Oral MS therapeutics, namely Fingolimod, dimethyl fumarate and their respective metabolites Fingolimod-phosphate and monomethyl fumarate, can protect neurons against acute glutamatergic excitotoxic damage. Furthermore, Fingolimod reduce glutamate-mediated intracortical excitability in relapsing-remitting MS. Glatiramer acetate -COPAXONE®, an immunomodulator drug for MS, reverses TNF-α-induced alterations of striatal glutamate-mediated excitatory postsynaptic currents in EAE-afflicted mice. With regard to T cells of MS patients: (1) The cell surface expression of a specific GluR: the AMPA GluR3 is elevated in T cells of MS patients during relapse and with active disease, (2) Glutamate and AMPA (a selective agonist for glutamate/AMPA iGluRs) augment chemotactic migration of T cells of MS patients, (3) Glutamate augments proliferation of T cells of MS patients in response to myelin-derived proteins: MBP and MOG, (4) T cells of MS patients respond abnormally to glutamate, (5) Significantly higher proliferation values in response to glutamate were found in MS patients assessed during relapse, and in those with gadolinium (Gd)+ enhancing lesions on MRI. Furthermore, glutamate released from autoreactive T cells induces excitotoxic cell death of neurons. Taken together, the evidences accumulated thus far indicate that abnormal glutamate levels and signaling in the nervous system, direct activation of T cells by glutamate, and glutamate release by T cells, can all contribute to MS. This may be true also to other neurological diseases. It is postulated herein that the detrimental activation of autoimmune T cells by glutamate in MS could lead to: (1) Cytotoxicity in the CNS: T cell-mediated killing of neurons and glia cells, which would subsequently increase the extracellular glutamate levels, and by doing so increase the excitotoxicity mediated by excess glutamate, (2) Release of proinflammatory cytokines, e.g., TNFα and IFNγ that increase neuroinflammation. Finally, if excess glutamate, abnormal neuronal signaling, glutamate-induced activation of T cells, and glutamate release by T cells are indeed all playing a key detrimental role in MS, then optional therapeutic tolls include GluR antagonists, although these may have various side effects. In addition, an especially attractive therapeutic strategy is the novel and entirely different therapeutic approach to minimize excess glutamate and excitotoxicity, titled: 'brain to blood glutamate scavenging', designed to lower excess glutamate levels in the CNS by 'pumping it out' from the brain to the blood. The glutamate scavanging is achieved by lowering glutamate levels in the blood by intravenous injection of the blood enzyme glutamate oxaloacetate transaminase (GOT). The glutamate-scavenging technology, which is still experimental, validated so far for other brain pathologies, but not tested on MS or EAE yet, may be beneficial for MS too, since it could decrease both the deleterious effects of excess glutamate on neural cells, and the activation of autoimmune T cells by glutamate in the brain. The topic of glutamate scavenging, and also its potential benefit for MS, are discussed towards the end of the review, and call for research in this direction.

Keywords: Experimental autoimmune encephalomyelitis; Glutamate; Glutamate receptors; Multiple sclerosis; Neuroimmunology; Neuroimmunomodulation; T cells

References

  1. J Immunol. 2006 Nov 15;177(10):6695-704 - PubMed
  2. Biochem J. 1986 Oct 1;239(1):121-5 - PubMed
  3. Brain Pathol. 2008 Jan;18(1):52-61 - PubMed
  4. Int Immunol. 1989;1(4):367-72 - PubMed
  5. J Cereb Blood Flow Metab. 2014 Feb;34(2):221-7 - PubMed
  6. Nature. 1991 Feb 28;349(6312):760-5 - PubMed
  7. J Neuroimmunol. 2011 Apr;233(1-2):80-9 - PubMed
  8. Arthritis Rheum. 2008 May;58(5):1445-50 - PubMed
  9. Cell Death Dis. 2014 Jan 09;5:e992 - PubMed
  10. Neuropharmacology. 2014 Jun;81:237-43 - PubMed
  11. Eur J Immunol. 1992 Sep;22(9):2429-36 - PubMed
  12. FASEB J. 2005 Nov;19(13):1878-80 - PubMed
  13. J Neuroimmunol. 2009 Nov 30;216(1-2):8-19 - PubMed
  14. Mol Med Rep. 2014 Jan;9(1):305-10 - PubMed
  15. J Biol Chem. 2002 Apr 26;277(17):14801-11 - PubMed
  16. Vet J. 2007 Mar;173(2):278-86 - PubMed
  17. Arch Neurol. 2003 Aug;60(8):1082-8 - PubMed
  18. J Endocrinol. 1998 Mar;156(3):519-27 - PubMed
  19. Eur J Pharmacol. 1991 Jun 6;198(2-3):215-7 - PubMed
  20. Eur J Neurosci. 2012 Jun;35(12):1908-16 - PubMed
  21. J Neurochem. 2016 Mar;136(5):971-80 - PubMed
  22. Prog Neurobiol. 2001 Sep;65(1):1-105 - PubMed
  23. Neurochem Int. 2007 Nov-Dec;51(6-7):356-60 - PubMed
  24. J Neuropathol Exp Neurol. 2007 Aug;66(8):732-9 - PubMed
  25. Neurochem Int. 2011 Feb;58(3):385-90 - PubMed
  26. Mol Pharmacol. 2005 Mar;67(3):856-67 - PubMed
  27. Scand J Clin Lab Invest. 1989 Dec;49(8):773-7 - PubMed
  28. Scand J Immunol. 2014 Mar;79(3):181-6 - PubMed
  29. Neuroscience. 2009 Jan 12;158(1):301-8 - PubMed
  30. J Immunol. 2003 Apr 15;170(8):4362-72 - PubMed
  31. J Immunol. 2007 Jul 15;179(2):1322-30 - PubMed
  32. Adv Neurol. 2001;85:57-77 - PubMed
  33. Neuron. 1992 Jan;8(1):169-79 - PubMed
  34. Prog Neurobiol. 1987;28(3):197-276 - PubMed
  35. Immunol Lett. 1997 Aug;58(3):177-80 - PubMed
  36. J Neuroimmunol. 2007 Apr;185(1-2):9-19 - PubMed
  37. J Neurosurg Anesthesiol. 2009 Jul;21(3):235-41 - PubMed
  38. Ann Neurol. 2014 Aug;76(2):269-78 - PubMed
  39. Front Mol Neurosci. 2012 Jan 02;4:56 - PubMed
  40. J Neural Transm (Vienna). 2014 Aug;121(8):945-55 - PubMed
  41. Neurobiol Dis. 2006 Jan;21(1):154-64 - PubMed
  42. J Cancer Res Clin Oncol. 1988;114(2):124-8 - PubMed
  43. Biochem Biophys Res Commun. 2005 Dec 30;338(4):1875-83 - PubMed
  44. Curr Opin Pharmacol. 2015 Feb;20:14-23 - PubMed
  45. Curr Opin Pharmacol. 2006 Feb;6(1):89-97 - PubMed
  46. Neurology. 1994 Nov;44(11 Suppl 8):S14-23 - PubMed
  47. J Immunol. 2008 Mar 15;180(6):3866-73 - PubMed
  48. Nat Med. 2000 Jan;6(1):67-70 - PubMed
  49. J Neurochem. 2005 Nov;95(4):913-8 - PubMed
  50. Eur J Immunol. 2005 Nov;35(11):3343-52 - PubMed
  51. Psychopharmacology (Berl). 2005 Apr;179(1):4-29 - PubMed
  52. Am J Physiol Endocrinol Metab. 2000 Jan;278(1):E83-9 - PubMed
  53. J Cancer Res Clin Oncol. 1989;115(6):571-4 - PubMed
  54. Nat Rev Neurosci. 2002 Sep;3(9):748-55 - PubMed
  55. Curr Opin Neurobiol. 2011 Apr;21(2):283-90 - PubMed
  56. Neuroimmunomodulation. 2009;16(3):201-7 - PubMed
  57. Histochem Cell Biol. 2009 Oct;132(4):435-45 - PubMed
  58. Invest New Drugs. 2012 Dec;30(6):2226-35 - PubMed
  59. J Neurochem. 2013 Jun;125(6):897-908 - PubMed
  60. Neurochem Int. 2001 Mar;38(3):277-85 - PubMed
  61. Cerebellum. 2015 Feb;14(1):19-22 - PubMed
  62. J Anat. 2007 Jun;210(6):693-702 - PubMed
  63. J Neuroimmunol. 2008 Mar;195(1-2):194-8 - PubMed
  64. Brain Res. 1984 May;319(2):103-64 - PubMed
  65. Trends Neurosci. 2001 Apr;24(4):224-30 - PubMed
  66. J Neural Transm (Vienna). 2014 Aug;121(8):1007-27 - PubMed
  67. J Immunol. 2007 Jan 15;178(2):683-92 - PubMed
  68. Biochem Biophys Res Commun. 2004 Nov 5;324(1):133-9 - PubMed
  69. J Neuroimmunol. 2000 Sep 22;109(2):112-20 - PubMed
  70. J Nutr. 2000 Apr;130(4S Suppl):1007S-15S - PubMed
  71. Ann Neurol. 2001 Aug;50(2):169-80 - PubMed
  72. J Neural Transm (Vienna). 2014 Aug;121(8):933-44 - PubMed
  73. J Control Release. 2015 Jul 28;210:169-78 - PubMed
  74. Trends Neurosci. 2004 Jun;27(6):321-8 - PubMed
  75. J Neural Transm (Vienna). 2014 Aug;121(8):983-1006 - PubMed
  76. Ann N Y Acad Sci. 2003 May;993:229-75; discussion 287-8 - PubMed
  77. Neurosci Lett. 1991 Dec 9;133(2):159-62 - PubMed
  78. Am J Respir Cell Mol Biol. 2004 Feb;30(2):139-44 - PubMed
  79. Cell Death Differ. 2011 Jan;18(1):99-108 - PubMed
  80. Neurology. 2001 Aug 28;57(4):671-5 - PubMed
  81. Clin Exp Immunol. 2007 Mar;147(3):412-8 - PubMed
  82. J Neural Transm (Vienna). 2014 Aug;121(8):793-6 - PubMed
  83. Int J Mol Sci. 2012;13(8):10041-66 - PubMed
  84. Mult Scler Relat Disord. 2016 Jan;5:73-6 - PubMed
  85. J Neural Transm (Vienna). 2014 Aug;121(8):971-9 - PubMed
  86. Br J Pharmacol. 2013 Jan;168(2):502-17 - PubMed
  87. Toxicol Pathol. 2001 Mar-Apr;29(2):208-23 - PubMed
  88. Neurochem Res. 2008 Jun;33(6):1044-50 - PubMed
  89. Eur J Biochem. 2004 Jan;271(1):1-13 - PubMed
  90. AIDS Res Hum Retroviruses. 1993 Sep;9(9):807-9 - PubMed
  91. J Neurochem. 2003 Oct;87(1):119-26 - PubMed
  92. Neurosci Lett. 2003 Apr 3;340(1):5-8 - PubMed
  93. J Neuroimmunol. 2007 Aug;188(1-2):146-58 - PubMed
  94. Br J Pharmacol. 2006 Jul;148(6):760-8 - PubMed
  95. J Pharmacol Exp Ther. 2002 Jul;302(1):50-7 - PubMed
  96. Int J Mol Sci. 2015 Feb 02;16(2):3226-36 - PubMed
  97. Mol Neurobiol. 2001 Aug-Dec;24(1-3):107-29 - PubMed
  98. Annu Rev Neurosci. 1994;17:31-108 - PubMed
  99. Science. 1993 Apr 2;260(5104):95-7 - PubMed
  100. J Neuroimmunol. 2002 Apr;125(1-2):170-8 - PubMed
  101. Hum Immunol. 2016 Sep;77(9):727-33 - PubMed
  102. Exp Neurol. 2007 Jan;203(1):213-20 - PubMed
  103. J Cardiothorac Vasc Anesth. 2002 Aug;16(4):431-6 - PubMed
  104. Biomed Res Int. 2013;2013:186068 - PubMed
  105. J Cereb Blood Flow Metab. 2011 Jun;31(6):1376-7 - PubMed
  106. Cell Death Differ. 2005 Aug;12 Suppl 1:878-92 - PubMed
  107. Prog Neurobiol. 2003 Aug;70(5):387-407 - PubMed
  108. Acta Histochem. 2003;105(1):81-7 - PubMed
  109. J Neuroinflammation. 2013 Oct 05;10:121 - PubMed
  110. Nat Med. 2010 Aug;16(8):897-902 - PubMed
  111. J Neuroimmune Pharmacol. 2013 Jun;8(3):651-63 - PubMed
  112. Glia. 1997 May;20(1):79-85 - PubMed
  113. Adv Exp Med Biol. 1999;468:97-107 - PubMed
  114. Brain Res. 2000 Oct 6;879(1-2):88-92 - PubMed
  115. Annu Rev Physiol. 2004;66:161-81 - PubMed
  116. Br J Pharmacol. 2001 Jul;133(6):936-44 - PubMed
  117. J Biol Chem. 2004 Aug 6;279(32):33352-8 - PubMed
  118. Annu Rev Pharmacol Toxicol. 1989;29:365-402 - PubMed
  119. Curr Opin Neurobiol. 2005 Jun;15(3):282-8 - PubMed
  120. N Engl J Med. 2009 Jul 16;361(3):302-3 - PubMed
  121. J Exp Med. 2004 Apr 5;199(7):971-9 - PubMed
  122. Prog Mol Biol Transl Sci. 2013;115:61-121 - PubMed
  123. Nat Med. 2000 Jan;6(1):62-6 - PubMed
  124. Leuk Lymphoma. 2009 Jun;50(6):985-97 - PubMed
  125. Clin Neurophysiol. 2015 Jan;126(1):165-9 - PubMed

Substances

MeSH terms

Publication Types