Display options
Share it on

Angew Chem Int Ed Engl. 2017 Mar 20;56(13):3718-3722. doi: 10.1002/anie.201611547. Epub 2017 Feb 15.

Protein-Templated Formation of an Inhibitor of the Blood Coagulation Factor Xa through a Background-Free Amidation Reaction.

Angewandte Chemie (International ed. in English)

Mike Jaegle, Torsten Steinmetzer, Jörg Rademann

Affiliations

  1. Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, 14195, Berlin, Germany.
  2. Philipps-Universität Marburg, Fachbereich Pharmazie, Institut für Pharmazeutische Chemie, Marbacher Weg 6, 35037, Marburg, Germany.

PMID: 28199769 PMCID: PMC5363247 DOI: 10.1002/anie.201611547

Abstract

Protein-templated reactions enable the target-guided formation of protein ligands from reactive fragments, ideally with no background reaction. Herein, we investigate the templated formation of amides. A nucleophilic fragment that binds to the coagulation factor Xa was incubated with the protein and thirteen differentially activated dipeptides. The protein induced a non-catalytic templated reaction for the phenyl and trifluoroethyl esters; the latter was shown to be a completely background-free reaction. Starting from two fragments with millimolar affinity, a 29 nm superadditive inhibitor of factor Xa was obtained. The fragment ligation reaction was detected with high sensitivity by an enzyme activity assay and by mass spectrometry. The reaction progress and autoinhibition of the templated reaction by the formed ligation product were determined, and the structure of the protein-inhibitor complex was elucidated.

© 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Keywords: amide bond formation; enzyme inhibitors; fragment-based drug discovery; peptide bond formation; protein-templated reactions

References

  1. J Biochem. 1977 Nov;82(5):1495-8 - PubMed
  2. Trends Biotechnol. 2009 Sep;27(9):512-21 - PubMed
  3. Expert Opin Drug Discov. 2006 Nov;1(6):525-38 - PubMed
  4. Analyst. 2007 Jul;132(7):693-705 - PubMed
  5. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6630-5 - PubMed
  6. Mol Divers. 2010 May;14(2):401-8 - PubMed
  7. Chem Soc Rev. 2015 Apr 21;44(8):2455-88 - PubMed
  8. J Mol Biol. 2010 Apr 9;397(4):1042-54 - PubMed
  9. Angew Chem Int Ed Engl. 2012 Jan 23;51(4):905-11 - PubMed
  10. Nat Rev Drug Discov. 2016 Sep;15(9):605-619 - PubMed
  11. Curr Top Med Chem. 2007;7(16):1630-42 - PubMed
  12. ChemMedChem. 2013 Jul;8(7):1041-56 - PubMed
  13. Nat Rev Drug Discov. 2002 Jan;1(1):26-36 - PubMed
  14. Angew Chem Int Ed Engl. 2009;48(34):6346-9 - PubMed
  15. J Pept Sci. 2014 Feb;20(2):78-86 - PubMed
  16. Future Med Chem. 2016;8(4):381-404 - PubMed
  17. Thromb Haemost. 1998 Jan;79(1):110-8 - PubMed
  18. Med Chem. 2006 Jul;2(4):349-61 - PubMed
  19. Int J Mol Sci. 2012 Oct 08;13(10):12857-79 - PubMed
  20. J Am Chem Soc. 2008 Oct 22;130(42):13820-1 - PubMed
  21. Angew Chem Int Ed Engl. 2006 Feb 20;45(9):1435-9 - PubMed
  22. Angew Chem Int Ed Engl. 2014 Apr 22;53(17):4337-40 - PubMed
  23. Chem Commun (Camb). 2015 Aug 7;51(61):12158-69 - PubMed
  24. Chembiochem. 2011 Nov 25;12(17):2640-6 - PubMed
  25. Bioorg Med Chem Lett. 2013 May 15;23(10):2844-52 - PubMed
  26. Chem Soc Rev. 2010 Apr;39(4):1316-24 - PubMed
  27. Chem Rev. 2006 Sep;106(9):3652-711 - PubMed
  28. J Comput Aided Mol Des. 2011 Jul;25(7):669-76 - PubMed
  29. Angew Chem Int Ed Engl. 2002 Mar 15;41(6):1053-7 - PubMed
  30. Nat Chem. 2009 Jun;1(3):187-92 - PubMed
  31. Angew Chem Int Ed Engl. 2011 May 9;50(20):4574-90 - PubMed
  32. Biochemistry. 2012 Jun 26;51(25):4990-5003 - PubMed
  33. Nat Commun. 2016 Sep 28;7:12761 - PubMed
  34. Angew Chem Int Ed Engl. 2004 Dec 17;44(1):116-20 - PubMed
  35. Angew Chem Int Ed Engl. 2010 Sep 10;49(38):6817-20 - PubMed
  36. Angew Chem Int Ed Engl. 2008;47(17):3275-8 - PubMed
  37. Nat Commun. 2014 Nov 18;5:5170 - PubMed
  38. Angew Chem Int Ed Engl. 2017 Mar 20;56(13):3718-3722 - PubMed
  39. Chem Rev. 2004 Aug;104(8):3641-76 - PubMed

Substances

MeSH terms

Publication Types