Display options
Share it on

Sci Data. 2016 Dec 20;3:160115. doi: 10.1038/sdata.2016.115.

Transcriptome characterisation and simple sequence repeat marker discovery in the seagrass Posidonia oceanica.

D D'Esposito, L Orrù, E Dattolo, L Bernardo, A Lamontanara, L Orsini, I A Serra, S Mazzuca, G Procaccini

Affiliations

  1. Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
  2. Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la genomica vegetale, 29017 Fiorenzuola d'Arda, Italy.
  3. Laboratorio di Biologia e Proteomica Vegetale (Lab. Bio. Pro. Ve.), Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87036 Rende (CS), Italy.
  4. Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.

PMID: 27996971 PMCID: PMC5170596 DOI: 10.1038/sdata.2016.115

Abstract

Posidonia oceanica is an endemic seagrass in the Mediterranean Sea, where it provides important ecosystem services and sustains a rich and diverse ecosystem. P. oceanica meadows extend from the surface to 40 meters depth. With the aim of boosting research in this iconic species, we generated a comprehensive RNA-Seq data set for P. oceanica by sequencing specimens collected at two depths and two times during the day. With this approach we attempted to capture the transcriptional diversity associated with change in light and other depth-related environmental factors. Using this extensive data set we generated gene predictions and identified an extensive catalogue of potential Simple Sequence Repeats (SSR) markers. The data generated here will open new avenues for the analysis of population genetic features and functional variation in P. oceanica. In total, 79,235 contigs were obtained by the assembly of 70,453,120 paired end reads. 43,711 contigs were successfully annotated. A total of 17,436 SSR were identified within 13,912 contigs.

Conflict of interest statement

The authors declare no competing financial interests.

References

  1. Mol Ecol. 2010 Feb;19(3):557-68 - PubMed
  2. Front Plant Sci. 2013 Jun 17;4:195 - PubMed
  3. Nat Rev Genet. 2011 Sep 07;12(10):671-82 - PubMed
  4. Bioinformatics. 2006 Jul 1;22(13):1658-9 - PubMed
  5. BMC Bioinformatics. 2003 Sep 11;4:41 - PubMed
  6. Mol Ecol. 2015 May;24(10):2336-48 - PubMed
  7. Genome Res. 2016 Aug;26(8):1134-44 - PubMed
  8. Nat Biotechnol. 2011 May 15;29(7):644-52 - PubMed
  9. Sci Rep. 2016 Jun 27;6:28615 - PubMed
  10. Nat Methods. 2012 Nov;9(11):1041 - PubMed
  11. Mar Pollut Bull. 2013 Oct 15;75(1-2):157-67 - PubMed
  12. Bioinformatics. 2005 Sep 15;21(18):3674-6 - PubMed
  13. Database (Oxford). 2009;2009:bap009 - PubMed
  14. Mar Environ Res. 2014 Oct;101:225-36 - PubMed
  15. Bioinformatics. 2010 Mar 15;26(6):841-2 - PubMed
  16. Sci Rep. 2015 Jul 28;5:12505 - PubMed
  17. Bioinformatics. 2011 Mar 15;27(6):863-4 - PubMed
  18. BMC Genomics. 2011 Feb 28;12:131 - PubMed
  19. Genome Biol. 2009;10(3):R25 - PubMed
  20. Front Plant Sci. 2013 Mar 19;4:38 - PubMed
  21. Brief Funct Genomics. 2012 Jan;11(1):63-70 - PubMed

MeSH terms

Publication Types