Display options
Share it on

PLoS Biol. 2016 Sep 21;14(9):e1002561. doi: 10.1371/journal.pbio.1002561. eCollection 2016 Sep.

The Biophysical Basis Underlying Gating Changes in the p.V1316A Mutant Nav1.7 Channel and the Molecular Pathogenesis of Inherited Erythromelalgia.

PLoS biology

Chiung-Wei Huang, Hsing-Jung Lai, Po-Yuan Huang, Ming-Jen Lee, Chung-Chin Kuo

Affiliations

  1. Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
  2. Department of Neurology, National Taiwan University Hospital Jinshan Branch, New Taipei City, Taiwan.
  3. Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.

PMID: 27653502 PMCID: PMC5031448 DOI: 10.1371/journal.pbio.1002561

Abstract

The Nav1.7 channel critically contributes to the excitability of sensory neurons, and gain-of-function mutations of this channel have been shown to cause inherited erythromelalgia (IEM) with neuropathic pain. In this study, we report a case of a severe phenotype of IEM caused by p.V1316A mutation in the Nav1.7 channel. Mechanistically, we first demonstrate that the Navβ4 peptide acts as a gating modifier rather than an open channel blocker competing with the inactivating peptide to give rise to resurgent currents in the Nav1.7 channel. Moreover, there are two distinct open and two corresponding fast inactivated states in the genesis of resurgent Na+ currents. One is responsible for the resurgent route and practically existent only in the presence of Navβ4 peptide, whereas the other is responsible for the "silent" route of recovery from inactivation. In this regard, the p.V1316A mutation makes hyperpolarization shift in the activation curve, and depolarization shift in the inactivation curve, vividly uncoupling inactivation from activation. In terms of molecular gating operation, the most important changes caused by the p.V1316A mutation are both acceleration of the transition from the inactivated states to the activated states and deceleration of the reverse transition, resulting in much larger sustained as well as resurgent Na+ currents. In summary, the genesis of the resurgent currents in the Nav1.7 channel is ascribable to the transient existence of a distinct and novel open state promoted by the Navβ4 peptide. In addition, S4-5 linker in domain III where V1316 is located seems to play a critical role in activation-inactivation coupling, chiefly via direct modulation of the transitional kinetics between the open and the inactivated states. The sustained and resurgent Na+ currents may therefore be correlatively enhanced by specific mutations involving this linker and relevant regions, and thus marked hyperexcitability in corresponding neural tissues as well as IEM symptomatology.

Conflict of interest statement

The authors have declared that no competing interests exist.

References

  1. Eur J Pain. 2010 Oct;14(9):944-50 - PubMed
  2. Nat Commun. 2013;4:1350 - PubMed
  3. FASEB J. 2011 Jun;25(6):1894-902 - PubMed
  4. J Neurophysiol. 2014 Apr;111(7):1429-43 - PubMed
  5. J Neurosci. 2013 Aug 28;33(35):14087-97 - PubMed
  6. J Neurosci. 2004 Sep 22;24(38):8232-6 - PubMed
  7. J Neurosci. 2000 Aug 1;20(15):5639-46 - PubMed
  8. Neuron. 1997 Oct;19(4):881-91 - PubMed
  9. Brain. 2012 Sep;135(Pt 9):2613-28 - PubMed
  10. Ann Neurol. 2009 Jun;65(6):733-41 - PubMed
  11. Nature. 2012 May 20;486(7401):135-9 - PubMed
  12. Science. 2005 Aug 5;309(5736):903-8 - PubMed
  13. Int J Dermatol. 1991 Jul;30(7):471-6 - PubMed
  14. J Neurophysiol. 2004 Nov;92(5):2831-43 - PubMed
  15. Pflugers Arch. 2014 Feb;466(2):275-93 - PubMed
  16. Pharmacol Rev. 2005 Dec;57(4):397-409 - PubMed
  17. Trends Mol Med. 2005 Dec;11(12):555-62 - PubMed
  18. Neuromolecular Med. 2015 Jun;17(2):158-69 - PubMed
  19. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12357-62 - PubMed
  20. J Physiol. 2014 Nov 15;592(22):4825-38 - PubMed
  21. Front Pharmacol. 2011 Oct 04;2:54 - PubMed
  22. Mol Pain. 2010 Apr 29;6:24 - PubMed
  23. Biophys J. 2001 Feb;80(2):729-37 - PubMed
  24. Pain. 2015 Sep;156(9):1637-46 - PubMed
  25. J Neurosci. 2014 Sep 10;34(37):12328-40 - PubMed
  26. Science. 2015 Dec 18;350(6267):aac5464 - PubMed
  27. J Gen Physiol. 2004 Jul;124(1):27-42 - PubMed
  28. Biophys J. 2005 Apr;88(4):2494-515 - PubMed
  29. J Gen Physiol. 2009 Aug;134(2):95-113 - PubMed
  30. Br J Pharmacol. 1997 Jul;121(6):1231-8 - PubMed
  31. Nature. 2011 Jul 10;475(7356):353-8 - PubMed
  32. Clin Sci (Lond). 1999 May;96(5):507-12 - PubMed
  33. Hum Mutat. 2010 Sep;31(9):E1670-86 - PubMed
  34. Biochem Biophys Res Commun. 2013 Mar 1;432(1):99-104 - PubMed
  35. J Neurol Neurosurg Psychiatry. 2006 Nov;77(11):1294-5 - PubMed
  36. Eur J Appl Physiol Occup Physiol. 1988;57(5):616-21 - PubMed
  37. J Physiol. 2003 Jul 1;550(Pt 1):67-82 - PubMed
  38. PLoS One. 2013;8(1):e55212 - PubMed
  39. J Neurosci. 2003 Jun 15;23(12):4922-30 - PubMed
  40. Brain. 2011 Jul;134(Pt 7):1972-86 - PubMed
  41. J Invest Dermatol. 2002 Apr;118(4):699-703 - PubMed
  42. Mol Pharmacol. 2011 Oct;80(4):724-34 - PubMed
  43. Mol Pharmacol. 1998 Oct;54(4):712-21 - PubMed
  44. J Neurosci. 2006 Nov 29;26(48):12566-75 - PubMed
  45. Neuron. 2000 Apr;26(1):13-25 - PubMed
  46. J Cell Physiol. 2014 Nov;229(11):1703-21 - PubMed
  47. Neurology. 2007 Aug 7;69(6):586-95 - PubMed
  48. Brain Res. 2013 Sep 5;1529:165-77 - PubMed
  49. J Neurosci. 2009 Feb 18;29(7):2027-42 - PubMed
  50. J Biol Chem. 2011 Oct 28;286(43):37503-14 - PubMed
  51. Jpn J Med. 1991 Nov-Dec;30(6):564-7 - PubMed
  52. J Biol Chem. 2014 Jan 24;289(4):1971-80 - PubMed
  53. Brain. 2005 Aug;128(Pt 8):1847-54 - PubMed
  54. Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):E93-102 - PubMed
  55. Nature. 2006 Dec 14;444(7121):894-8 - PubMed
  56. J Neurosci. 2003 Aug 20;23(20):7577-85 - PubMed
  57. Brain. 2016 Apr;139(Pt 4):1052-65 - PubMed
  58. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1527-32 - PubMed
  59. Neuron. 2005 Jan 20;45(2):233-44 - PubMed
  60. J Physiol. 2007 Jun 15;581(Pt 3):1019-31 - PubMed
  61. Pflugers Arch. 2015 Aug;467(8):1733-46 - PubMed
  62. J Neurosci. 1997 Jun 15;17(12):4517-26 - PubMed
  63. Mol Pharmacol. 1994 Oct;46(4):716-25 - PubMed
  64. Handb Exp Pharmacol. 2014;221:91-110 - PubMed
  65. Curr Protein Pept Sci. 2006 Jun;7(3):217-27 - PubMed
  66. Ann Neurol. 2012 Jan;71(1):26-39 - PubMed
  67. J Neurophysiol. 2007 Aug;98(2):710-9 - PubMed
  68. Trends Mol Med. 2013 Jul;19(7):406-9 - PubMed
  69. Neuron. 1994 Apr;12(4):819-29 - PubMed
  70. Sci Rep. 2016 Feb 12;6:21493 - PubMed

Publication Types