Display options
Share it on

Sci Rep. 2016 Jun 08;6:27555. doi: 10.1038/srep27555.

Generative rules of Drosophila locomotor behavior as a candidate homology across phyla.

Scientific reports

Alex Gomez-Marin, Efrat Oron, Anna Gakamsky, Dan Valente, Yoav Benjamini, Ilan Golani

Affiliations

  1. Champalimaud Neuroscience Programme, Lisbon, Portugal.
  2. Department of Zoology, Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Israel.
  3. Cold Spring Harbor laboratory, NY, USA.
  4. Department of Statistics and Sagol School of Neuroscience, Tel Aviv University.

PMID: 27271799 PMCID: PMC4897781 DOI: 10.1038/srep27555

Abstract

The discovery of shared behavioral processes across phyla is a significant step in the establishment of a comparative study of behavior. We use immobility as an origin and reference for the measurement of fly locomotor behavior; speed, walking direction and trunk orientation as the degrees of freedom shaping this behavior; and cocaine as the parameter inducing progressive transitions in and out of immobility. We characterize and quantify the generative rules that shape Drosophila locomotor behavior, bringing about a gradual buildup of kinematic degrees of freedom during the transition from immobility to normal behavior, and the opposite narrowing down into immobility. Transitions into immobility unfold via sequential enhancement and then elimination of translation, curvature and finally rotation. Transitions out of immobility unfold by progressive addition of these degrees of freedom in the opposite order. The same generative rules have been found in vertebrate locomotor behavior in several contexts (pharmacological manipulations, ontogeny, social interactions) involving transitions in-and-out of immobility. Recent claims for deep homology between arthropod central complex and vertebrate basal ganglia provide an opportunity to examine whether the rules we report also share common descent. Our approach prompts the discovery of behavioral homologies, contributing to the elusive problem of behavioral evolution.

References

  1. J Neurosci. 2013 Feb 6;33(6):2709-17 - PubMed
  2. J Comp Physiol A. 1999 Sep;185(3):277-88 - PubMed
  3. Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21335-40 - PubMed
  4. PLoS Comput Biol. 2015 Nov 23;11(11):e1004577 - PubMed
  5. Neuroscience. 1985 Mar;14(3):783-98 - PubMed
  6. Anim Behav. 1967 Jan;15(1):149-52 - PubMed
  7. Cell. 2009 Oct 16;139(2):416-27 - PubMed
  8. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7226-9 - PubMed
  9. Pharmacol Biochem Behav. 1989 Jul;33(3):595-9 - PubMed
  10. Curr Biol. 2000 Feb 24;10(4):187-94 - PubMed
  11. Biol Cybern. 1996 Jun;74(6):487-95 - PubMed
  12. Behav Brain Res. 1989 Oct 1;35(1):27-39 - PubMed
  13. Behav Processes. 2003 Sep 29;64(2):145-160 - PubMed
  14. Dev Psychobiol. 1988 Nov;21(7):679-710 - PubMed
  15. Proc Biol Sci. 2011 Mar 22;278(1707):906-13 - PubMed
  16. Neuroscience. 2009 Jun 16;161(1):3-12 - PubMed
  17. Front Neural Circuits. 2009 Jul 01;3:5 - PubMed
  18. Curr Opin Neurobiol. 2002 Dec;12(6):639-45 - PubMed
  19. Brain Res. 1989 Jun 26;490(2):255-67 - PubMed
  20. Brain. 1948 Jun;71(2):109-83 - PubMed
  21. J Mot Behav. 1997 Jun;29(2):99-112 - PubMed
  22. Nat Neurosci. 2014 Nov;17(11):1455-62 - PubMed
  23. Curr Opin Neurobiol. 2014 Dec;29:39-47 - PubMed
  24. J Neurosci. 2009 Apr 29;29(17):5370-80 - PubMed
  25. Brain Res. 1975 Sep 5;94(3):507-22 - PubMed
  26. Genetics. 2000 Jul;155(3):1161-74 - PubMed
  27. Genes Brain Behav. 2005 Oct;4(7):431-43 - PubMed
  28. PLoS One. 2010 Apr 01;5(4):e9954 - PubMed
  29. Nat Commun. 2011 Aug 23;2:441 - PubMed
  30. Genes Brain Behav. 2004 Oct;3(5):273-86 - PubMed
  31. PLoS One. 2012;7(8):e41642 - PubMed
  32. PLoS Comput Biol. 2010 Jan 15;6(1):e1000638 - PubMed
  33. J Neurosci Methods. 2004 Feb 15;133(1-2):161-72 - PubMed
  34. Brain. 1951 Dec;74(4):443-80 - PubMed
  35. Curr Opin Neurobiol. 2013 Oct;23(5):780-5 - PubMed
  36. Nat Neurosci. 2012 Nov;15(11):1516-23 - PubMed
  37. Curr Biol. 1998 Jan 15;8(2):109-12 - PubMed
  38. Q Rev Biol. 1953 Dec;28(4):337-63 - PubMed
  39. Nature. 1976 Oct 21;263(5579):695-6 - PubMed
  40. Neuroscience. 2013 Jun 25;241:126-34 - PubMed
  41. PLoS One. 2013 Oct 16;8(10):e76257 - PubMed
  42. J Comp Physiol Psychol. 1969 Apr;67(4):430-41 - PubMed
  43. Behav Brain Res. 2012 Jun 1;231(2):309-16 - PubMed
  44. Curr Biol. 2000 Jul 13;10(14):R509-11 - PubMed
  45. Front Neurosci. 2010 Dec 08;4:205 - PubMed
  46. Philos Trans R Soc Lond B Biol Sci. 2016 Jan 5;371(1685):20150057 - PubMed
  47. Front Behav Neurosci. 2014 Feb 13;8:38 - PubMed
  48. J Theor Biol. 1982 Jul 7;97(1):43-55 - PubMed
  49. Proc Natl Acad Sci U S A. 2012 Jun 26;109 Suppl 1:10669-76 - PubMed
  50. Curr Biol. 2012 Nov 20;22(22):2114-23 - PubMed
  51. Neurosci Biobehav Rev. 1991 Winter;15(4):455-60 - PubMed
  52. Science. 2013 Apr 12;340(6129):157-61 - PubMed
  53. Brain Res Bull. 1977 Jan-Feb;2(1):49-53 - PubMed
  54. Philos Trans R Soc Lond B Biol Sci. 2016 Jan 5;371(1685):20150035 - PubMed
  55. Behav Processes. 2004 Sep 30;67(2):207-19 - PubMed
  56. Science. 1988 Mar 25;239(4847):1513-20 - PubMed
  57. PLoS One. 2007 Oct 24;2(10):e1083 - PubMed
  58. Brain Res. 1979 Mar 23;164:237-67 - PubMed

Substances

MeSH terms

Publication Types