Display options
Share it on

Circulation. 2016 Jan 26;133(4):388-97. doi: 10.1161/CIRCULATIONAHA.115.018535. Epub 2016 Jan 05.

Isoproterenol Promotes Rapid Ryanodine Receptor Movement to Bridging Integrator 1 (BIN1)-Organized Dyads.

Circulation

Ying Fu, Seiji A Shaw, Robert Naami, Caresse L Vuong, Wassim A Basheer, Xiuqing Guo, TingTing Hong

Affiliations

  1. From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.).
  2. From Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (Y.F., S.A.S., R.N., C.L.V., W.A.B., T.H.); Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA (X.G.); and Departments of Medicine, Cedars-Sinai Medical Center and UCLA, Los Angeles, CA (T.H.). [email protected].

PMID: 26733606 PMCID: PMC4729615 DOI: 10.1161/CIRCULATIONAHA.115.018535

Abstract

BACKGROUND: The key pathophysiology of human acquired heart failure is impaired calcium transient, which is initiated at dyads consisting of ryanodine receptors (RyRs) at sarcoplasmic reticulum apposing CaV1.2 channels at t-tubules. Sympathetic tone regulates myocardial calcium transients through β-adrenergic receptor (β-AR)-mediated phosphorylation of dyadic proteins. Phosphorylated RyRs (P-RyR) have increased calcium sensitivity and open probability, amplifying calcium transient at a cost of receptor instability. Given that bridging integrator 1 (BIN1) organizes t-tubule microfolds and facilitates CaV1.2 delivery, we explored whether β-AR-regulated RyRs are also affected by BIN1.

METHODS AND RESULTS: Isolated adult mouse hearts or cardiomyocytes were perfused for 5 minutes with the β-AR agonist isoproterenol (1 µmol/L) or the blockers CGP+ICI (baseline). Using biochemistry and superresolution fluorescent imaging, we identified that BIN1 clusters P-RyR and CaV1.2. Acute β-AR activation increases coimmunoprecipitation between P-RyR and cardiac spliced BIN1+13+17 (with exons 13 and 17). Isoproterenol redistributes BIN1 to t-tubules, recruiting P-RyRs and improving the calcium transient. In cardiac-specific Bin1 heterozygote mice, isoproterenol fails to concentrate BIN1 to t-tubules, impairing P-RyR recruitment. The resultant accumulation of uncoupled P-RyRs increases the incidence of spontaneous calcium release. In human hearts with end-stage ischemic cardiomyopathy, we find that BIN1 is also 50% reduced, with diminished P-RyR association with BIN1.

CONCLUSIONS: On β-AR activation, reorganization of BIN1-induced microdomains recruits P-RyR into dyads, increasing the calcium transient while preserving electric stability. When BIN1 is reduced as in human acquired heart failure, acute stress impairs microdomain formation, limiting contractility and promoting arrhythmias.

© 2016 American Heart Association, Inc.

Keywords: BIN1 protein; heart failure; membrane microdomain; myocytes cardiac; receptors, adrenergic, beta; ryanodine receptor 2, mouse

References

  1. J Mol Cell Cardiol. 2013 May;58:225-31 - PubMed
  2. Biochim Biophys Acta. 2013 Dec;1832(12):2425-31 - PubMed
  3. Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19621-6 - PubMed
  4. Circ Res. 2014 Apr 11;114(8):1320-7; discussion 1327 - PubMed
  5. Nat Med. 2014 Jun;20(6):624-32 - PubMed
  6. Circ Res. 2014 Jul 7;115(2):252-62 - PubMed
  7. Cardiovasc Res. 2014 Jul 15;103(2):198-205 - PubMed
  8. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16598-603 - PubMed
  9. Circ Res. 2014 Dec 5;115(12):986-96 - PubMed
  10. Nature. 2015 Jan 1;517(7532):44-9 - PubMed
  11. Circulation. 2015 Jan 27;131(4):e29-322 - PubMed
  12. J Mol Cell Cardiol. 2015 Aug;85:282-91 - PubMed
  13. J Cell Biochem. 2015 Nov;116(11):2541-51 - PubMed
  14. Curr Mol Pharmacol. 2015;8(2):206-22 - PubMed
  15. Ann N Y Acad Sci. 1998 Sep 16;853:20-30 - PubMed
  16. Cell. 2000 May 12;101(4):365-76 - PubMed
  17. Cardiovasc Res. 2001 Feb 1;49(2):298-307 - PubMed
  18. J Cell Biol. 2001 May 14;153(4):699-708 - PubMed
  19. Circ Res. 2001 Jun 8;88(11):1151-8 - PubMed
  20. Circulation. 2001 Aug 7;104(6):688-93 - PubMed
  21. Circulation. 2001 Dec 4;104(23):2843-8 - PubMed
  22. Nature. 2002 Jan 10;415(6868):198-205 - PubMed
  23. Science. 2002 Aug 16;297(5584):1193-6 - PubMed
  24. J Biol Chem. 2003 Jun 27;278(26):23480-6 - PubMed
  25. J Biol Chem. 2003 Oct 3;278(40):38593-600 - PubMed
  26. Biophys J. 2004 Apr;86(4):2121-8 - PubMed
  27. Circ Res. 2004 Apr 2;94(6):e61-70 - PubMed
  28. Circ Res. 2004 Oct 15;95(8):798-806 - PubMed
  29. Circ Res. 1979 Aug;45(2):260-7 - PubMed
  30. Circ Res. 1989 Oct;65(4):989-96 - PubMed
  31. J Clin Invest. 1992 Mar;89(3):932-8 - PubMed
  32. Biochem Biophys Res Commun. 1994 Jan 28;198(2):701-6 - PubMed
  33. Science. 1997 May 2;276(5313):800-6 - PubMed
  34. J Clin Invest. 1997 Jul 1;100(1):169-79 - PubMed
  35. Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):511-8 - PubMed
  36. Proc Natl Acad Sci U S A. 2006 May 9;103(19):7500-5 - PubMed
  37. Cancer Res. 2007 Jan 1;67(1):100-7 - PubMed
  38. Proc Natl Acad Sci U S A. 2007 Sep 18;104(38):14958-63 - PubMed
  39. Cardiovasc Res. 2008 Jan 15;77(2):315-24 - PubMed
  40. Nat Methods. 2008 Feb;5(2):159-61 - PubMed
  41. Science. 2008 Feb 8;319(5864):810-3 - PubMed
  42. PLoS Biol. 2010 Feb;8(2):e1000312 - PubMed
  43. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10274-9 - PubMed
  44. J Clin Invest. 2010 Dec;120(12):4375-87 - PubMed
  45. Heart Rhythm. 2011 Aug;8(8):1296-8 - PubMed
  46. Heart Rhythm. 2012 May;9(5):812-20 - PubMed
  47. Circ Heart Fail. 2012 May 1;5(3):357-65 - PubMed

Substances

MeSH terms

Publication Types

Grant support