Display options
Share it on
Full text links
Silverchair Information Systems Free PMC Article

Biochem J. 1987 Apr 01;243(1):47-54. doi: 10.1042/bj2430047.

The conformational changes of alpha 2-macroglobulin induced by methylamine or trypsin. Characterization by extrinsic and intrinsic spectroscopic probes.

The Biochemical journal

L J Larsson, P Lindahl, C Hallén-Sandgren, I Björk

PMID: 2440424 PMCID: PMC1147812 DOI: 10.1042/bj2430047
Free PMC Article

Abstract

The conformational changes around the thioester-bond region of human or bovine alpha 2M (alpha 2-macroglobulin) on reaction with methylamine or trypsin were studied with the probe AEDANS [N-(acetylaminoethyl)-8-naphthylamine-1-sulphonic acid], bound to the liberated thiol groups. The binding affected the fluorescence emission and lifetime of the probe in a manner indicating that the thioester-bond region is partially buried in all forms of the inhibitor. In human alpha 2M these effects were greater for the trypsin-treated than for the methylamine-treated inhibitor, which both have undergone similar, major, conformational changes. This difference may thus be due to a close proximity of the thioester region to the bound proteinase. Reaction of trypsin with thiol-labelled methylamine-treated bovine alpha 2M, which retains a near-native conformation and inhibitory activity, indicated that the major conformational change accompanying the binding of proteinases involves transfer of the thioester-bond region to a more polar environment without increasing the exposure of this region at the surface of the protein. Labelling of the transglutaminase cross-linking site of human alpha 2M with dansylcadaverine [N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulphonamide] suggested that this site is in moderately hydrophobic surroundings. Reaction of the labelled inhibitor with methylamine or trypsin produced fluorescence changes consistent with further burial of the cross-linking site. These changes were more pronounced for trypsin-treated than for methylamine-treated alpha 2M, presumably an effect of the cleavage of the adjacent 'bait' region. Solvent perturbation of the u.v. absorption and iodide quenching of the tryptophan fluorescence of human alpha 2M showed that one or two tryptophan residues in each alpha 2M monomer are buried on reaction with methylamine or trypsin, with no discernible change in the exposure of tyrosine residues. Together, these results indicate an extensive conformational change of alpha 2M on reaction with amines or proteinases and are consistent with several aspects of a recently proposed model of alpha 2M structure [Feldman, Gonias & Pizzo (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5700-5704].

Similar articles

Show all 8 similar articles

References

  1. Biochem J. 1978 Jul 1;173(1):27-38 - PubMed
  2. J Biol Chem. 1965 Feb;240:628-38 - PubMed
  3. FEBS Lett. 1980 Dec 1;121(2):275-9 - PubMed
  4. J Biol Chem. 1979 Jun 25;254(12):5155-60 - PubMed
  5. Biochem J. 1979 Aug 1;181(2):401-18 - PubMed
  6. Nature. 1980 Jan 10;283(5743):162-7 - PubMed
  7. J Biol Chem. 1981 Jan 25;256(2):547-50 - PubMed
  8. Acta Chem Scand. 1966;20(8):2299-300 - PubMed
  9. Biochemistry. 1968 Jul;7(7):2523-32 - PubMed
  10. Anal Biochem. 1968 Oct 24;25(1):412-6 - PubMed
  11. Biochemistry. 1971 Aug 17;10(17):3254-63 - PubMed
  12. Biochem J. 1972 Mar;127(1):187-97 - PubMed
  13. J Exp Med. 1973 Sep 1;138(3):508-21 - PubMed
  14. Biochemistry. 1973 Oct 9;12(21):4154-61 - PubMed
  15. Biochem J. 1973 Aug;133(4):709-24 - PubMed
  16. Anal Biochem. 1974 Feb;57(2):593-604 - PubMed
  17. Methods Enzymol. 1976;45:177-91 - PubMed
  18. Methods Enzymol. 1976;45:639-52 - PubMed
  19. Methods Enzymol. 1978;49:222-36 - PubMed
  20. FEBS Lett. 1981 May 18;127(2):167-73 - PubMed
  21. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2235-9 - PubMed
  22. J Biol Chem. 1981 Sep 10;256(17):9016-22 - PubMed
  23. FEBS Lett. 1981 Jun 1;128(1):123-6 - PubMed
  24. FEBS Lett. 1981 Jul 6;129(2):314-7 - PubMed
  25. J Biol Chem. 1981 Oct 25;256(20):10409-14 - PubMed
  26. J Biochem Biophys Methods. 1981 Sep;5(3):131-46 - PubMed
  27. Biochem J. 1981 May 1;195(2):453-61 - PubMed
  28. Hoppe Seylers Z Physiol Chem. 1982 Aug;363(8):803-12 - PubMed
  29. Biochim Biophys Acta. 1982 Aug 10;705(3):306-14 - PubMed
  30. Biochem Biophys Res Commun. 1982 Aug 31;107(4):1243-51 - PubMed
  31. Biochem J. 1982 Nov 1;207(2):347-56 - PubMed
  32. Biochem Biophys Res Commun. 1983 Mar 29;111(3):964-9 - PubMed
  33. Biochemistry. 1983 Feb 1;22(3):536-46 - PubMed
  34. Biochemistry. 1983 Jul 19;22(15):3647-53 - PubMed
  35. Biochem J. 1984 Jan 1;217(1):303-8 - PubMed
  36. Biochem Biophys Res Commun. 1984 Jan 30;118(2):691-5 - PubMed
  37. Mol Cell Biochem. 1984;58(1-2):121-8 - PubMed
  38. Mol Cell Biochem. 1984;58(1-2):69-77 - PubMed
  39. J Biol Chem. 1984 Jul 10;259(13):8318-27 - PubMed
  40. Biochem J. 1980 Jun 1;187(3):695-701 - PubMed
  41. Biochemistry. 1984 Jun 5;23(12):2802-7 - PubMed
  42. Biochemistry. 1984 Jul 3;23(14):3115-24 - PubMed
  43. J Biol Chem. 1985 Aug 25;260(18):10169-76 - PubMed
  44. Biochemistry. 1985 May 21;24(11):2653-60 - PubMed
  45. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5700-4 - PubMed
  46. Biochem J. 1985 Oct 15;231(2):451-7 - PubMed
  47. J Biol Chem. 1962 Aug;237:2481-92 - PubMed
  48. J Biol Chem. 1979 Jun 10;254(11):4452-6 - PubMed

Substances

MeSH terms

Publication Types

LinkOut - more resources