Display options
Share it on

Am J Physiol Gastrointest Liver Physiol. 2015 Jul 01;309(1):G30-41. doi: 10.1152/ajpgi.00031.2015. Epub 2015 Apr 30.

TLR2 and TLR9 contribute to alcohol-mediated liver injury through induction of CXCL1 and neutrophil infiltration.

American journal of physiology. Gastrointestinal and liver physiology

Yoon Seok Roh, Bi Zhang, Rohit Loomba, Ekihiro Seki

Affiliations

  1. Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; and Division of Gastroenterology, Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California.
  2. Division of Gastroenterology, Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California.
  3. Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; and Division of Gastroenterology, Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California [email protected].

PMID: 25930080 PMCID: PMC4491507 DOI: 10.1152/ajpgi.00031.2015

Abstract

Although previous studies reported the involvement of the TLR4-TRIF pathway in alcohol-induced liver injury, the role of TLR2 and TLR9 signaling in alcohol-mediated neutrophil infiltration and liver injury has not been elucidated. Since alcohol binge drinking is recognized to induce more severe form of alcohol liver disease, we used a chronic-binge ethanol-feeding model as a mouse model for early stage of alcoholic hepatitis. Whereas a chronic-binge ethanol feeding induced alcohol-mediated liver injury in wild-type mice, TLR2- and TLR9-deficient mice showed reduced liver injury. Induction of neutrophil-recruiting chemokines, including Cxcl1, Cxcl2, and Cxcl5, and hepatic neutrophil infiltration were increased in wild-type mice, but not in TLR2- and TLR9-deficient mice. In vivo depletion of Kupffer cells (KCs) by liposomal clodronate reduced liver injury and the expression of Il1b, but not Cxcl1, Cxcl2, and Cxcl5, suggesting that KCs are partly associated with liver injury, but not neutrophil recruitment, in a chronic-binge ethanol-feeding model. Notably, hepatocytes and hepatic stellate cells (HSCs) produce high amounts of CXCL1 in ethanol-treated mice. The treatment with TLR2 and TLR9 ligands synergistically upregulated CXCL1 expression in hepatocytes. Moreover, the inhibitors for CXCR2, a receptor for CXCL1, and MyD88 suppressed neutrophil infiltration and liver injury induced by chronic-binge ethanol treatment. Consistent with the above findings, hepatic CXCL1 expression was highly upregulated in patients with alcoholic hepatitis. In a chronic-binge ethanol-feeding model, the TLR2 and TLR9-dependent MyD88-dependent pathway mediates CXCL1 production in hepatocytes and HSCs; the CXCL1 then promotes neutrophil infiltration into the liver via CXCR2, resulting in the development of alcohol-mediated liver injury.

Copyright © 2015 the American Physiological Society.

Keywords: AH; ALD; MyD88; binge ethanol feeding; chemokine

References

  1. Immunol Lett. 2003 Jan 22;85(2):85-95 - PubMed
  2. Nat Med. 2007 Nov;13(11):1324-32 - PubMed
  3. PLoS One. 2014;9(5):e96864 - PubMed
  4. N Engl J Med. 2009 Jun 25;360(26):2758-69 - PubMed
  5. Blood. 2009 Jan 8;113(2):429-37 - PubMed
  6. Curr Top Microbiol Immunol. 2002;270:155-67 - PubMed
  7. Alcohol Clin Exp Res. 2011 Aug;35(8):1509-18 - PubMed
  8. J Clin Invest. 2013 Jan;123(1):179-88 - PubMed
  9. Hepatology. 2013 Feb;57(2):577-89 - PubMed
  10. Nature. 2010 Oct 21;467(7318):972-6 - PubMed
  11. J Immunol. 2008 Mar 15;180(6):4308-15 - PubMed
  12. Toxicol Pathol. 2007 Oct;35(6):757-66 - PubMed
  13. J Immunol. 2001 Apr 1;166(7):4737-42 - PubMed
  14. Proc Natl Acad Sci U S A. 2004 Jul 20;101(29):10679-84 - PubMed
  15. J Parasitol Res. 2012;2012:737324 - PubMed
  16. Hepatology. 2013 Nov;58(5):1814-23 - PubMed
  17. Nat Rev Gastroenterol Hepatol. 2013 Sep;10(9):503 - PubMed
  18. Immunity. 1999 Oct;11(4):443-51 - PubMed
  19. Hepatology. 2011 Sep 2;54(3):999-1008 - PubMed
  20. J Exp Med. 1998 Mar 16;187(6):903-15 - PubMed
  21. Gastroenterology. 1995 Jan;108(1):218-24 - PubMed
  22. Am J Gastroenterol. 1991 Feb;86(2):210-6 - PubMed
  23. Alcohol Alcohol. 2004 Jul-Aug;39(4):312-5 - PubMed
  24. Hepatology. 2008 Oct;48(4):1224-31 - PubMed
  25. J Dent Res. 2011 Apr;90(4):417-27 - PubMed
  26. Infect Immun. 2012 Jun;80(6):2076-88 - PubMed
  27. Gastroenterology. 2010 Jul;139(1):323-34.e7 - PubMed
  28. Am J Epidemiol. 2013 Feb 15;177(4):333-42 - PubMed
  29. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16544-9 - PubMed
  30. Hepatology. 2008 Jul;48(1):322-35 - PubMed
  31. Cell. 1997 Oct 31;91(3):385-95 - PubMed
  32. Ann Intern Med. 1971 Mar;74(3):311-21 - PubMed
  33. Gastroenterology. 2011 Nov;141(5):1572-85 - PubMed
  34. Immunity. 2003 Oct;19(4):583-93 - PubMed
  35. Cell Death Differ. 2011 Aug;18(8):1316-25 - PubMed
  36. J Leukoc Biol. 2014 Jan;95(1):47-52 - PubMed
  37. J Immunol. 2002 Mar 15;168(6):2963-9 - PubMed
  38. J Immunol. 2011 May 15;186(10):5916-26 - PubMed
  39. J Hepatol. 2001 Feb;34(2):254-60 - PubMed
  40. Nature. 2010 Mar 4;464(7285):104-7 - PubMed
  41. Int J Environ Res Public Health. 2010 Dec;7(12):4281-304 - PubMed
  42. Hepatology. 2011 Jan;53(1):96-105 - PubMed
  43. Am J Physiol Gastrointest Liver Physiol. 2009 Jan;296(1):G15-22 - PubMed
  44. Free Radic Biol Med. 2006 Apr 15;40(8):1474-81 - PubMed
  45. Alcohol. 2002 May;27(1):23-7 - PubMed

Substances

MeSH terms

Publication Types

Grant support